Abstract:This paper presents a novel paradigm in simulation-based engineering sciences by introducing a new framework called Generative Parametric Design (GPD). The GPD framework enables the generation of new designs along with their corresponding parametric solutions given as a reduced basis. To achieve this, two Rank Reduction Autoencoders (RRAEs) are employed, one for encoding and generating the design or geometry, and the other for encoding the sparse Proper Generalized Decomposition (sPGD) mode solutions. These models are linked in the latent space using regression techniques, allowing efficient transitions between design and their associated sPGD modes. By empowering design exploration and optimization, this framework also advances digital and hybrid twin development, enhancing predictive modeling and real-time decision-making in engineering applications. The developed framework is demonstrated on two-phase microstructures, in which the multiparametric solutions account for variations in two key material parameters.
Abstract:Most existing latent-space models for dynamical systems require fixing the latent dimension in advance, they rely on complex loss balancing to approximate linear dynamics, and they don't regularize the latent variables. We introduce RRAEDy, a model that removes these limitations by discovering the appropriate latent dimension, while enforcing both regularized and linearized dynamics in the latent space. Built upon Rank-Reduction Autoencoders (RRAEs), RRAEDy automatically rank and prune latent variables through their singular values while learning a latent Dynamic Mode Decomposition (DMD) operator that governs their temporal progression. This structure-free yet linearly constrained formulation enables the model to learn stable and low-dimensional dynamics without auxiliary losses or manual tuning. We provide theoretical analysis demonstrating the stability of the learned operator and showcase the generality of our model by proposing an extension that handles parametric ODEs. Experiments on canonical benchmarks, including the Van der Pol oscillator, Burgers' equation, 2D Navier-Stokes, and Rotating Gaussians, show that RRAEDy achieves accurate and robust predictions. Our code is open-source and available at https://github.com/JadM133/RRAEDy. We also provide a video summarizing the main results at https://youtu.be/ox70mSSMGrM.
Abstract:Generative thermal design for complex geometries is fundamental in many areas of engineering, yet it faces two main challenges: the high computational cost of high-fidelity simulations and the limitations of conventional generative models. Approaches such as autoencoders (AEs) and variational autoencoders (VAEs) often produce unstructured latent spaces with discontinuities, which restricts their capacity to explore designs and generate physically consistent solutions. To address these limitations, we propose a hybrid framework that combines Variational Rank-Reduction Autoencoders (VRRAEs) with Deep Operator Networks (DeepONets). The VRRAE introduces a truncated SVD within the latent space, leading to continuous, interpretable, and well-structured representations that mitigate posterior collapse and improve geometric reconstruction. The DeepONet then exploits this compact latent encoding in its branch network, together with spatial coordinates in the trunk network, to predict temperature gradients efficiently and accurately. This hybrid approach not only enhances the quality of generated geometries and the accuracy of gradient prediction, but also provides a substantial advantage in inference efficiency compared to traditional numerical solvers. Overall, the study underscores the importance of structured latent representations for operator learning and highlights the potential of combining generative models and operator networks in thermal design and broader engineering applications.
Abstract:Deterministic Rank Reduction Autoencoders (RRAEs) enforce by construction a regularization on the latent space by applying a truncated SVD. While this regularization makes Autoencoders more powerful, using them for generative purposes is counter-intuitive due to their deterministic nature. On the other hand, Variational Autoencoders (VAEs) are well known for their generative abilities by learning a probabilistic latent space. In this paper, we present Variational Rank Reduction Autoencoders (VRRAEs), a model that leverages the advantages of both RRAEs and VAEs. Our claims and results show that when carefully sampling the latent space of RRAEs and further regularizing with the Kullback-Leibler (KL) divergence (similarly to VAEs), VRRAEs outperform RRAEs and VAEs. Additionally, we show that the regularization induced by the SVD not only makes VRRAEs better generators than VAEs, but also reduces the possibility of posterior collapse. Our results include a synthetic dataset of a small size that showcases the robustness of VRRAEs against collapse, and three real-world datasets; the MNIST, CelebA, and CIFAR-10, over which VRRAEs are shown to outperform both VAEs and RRAEs on many random generation and interpolation tasks based on the FID score.
Abstract:The efficiency of classical Autoencoders (AEs) is limited in many practical situations. When the latent space is reduced through autoencoders, feature extraction becomes possible. However, overfitting is a common issue, leading to ``holes'' in AEs' interpolation capabilities. On the other hand, increasing the latent dimension results in a better approximation with fewer non-linearly coupled features (e.g., Koopman theory or kPCA), but it doesn't necessarily lead to dimensionality reduction, which makes feature extraction problematic. As a result, interpolating using Autoencoders gets harder. In this work, we introduce the Rank Reduction Autoencoder (RRAE), an autoencoder with an enlarged latent space, which is constrained to have a small pre-specified number of dominant singular values (i.e., low-rank). The latent space of RRAEs is large enough to enable accurate predictions while enabling feature extraction. As a result, the proposed autoencoder features a minimal rank linear latent space. To achieve what's proposed, two formulations are presented, a strong and a weak one, that build a reduced basis accurately representing the latent space. The first formulation consists of a truncated SVD in the latent space, while the second one adds a penalty term to the loss function. We show the efficiency of our formulations by using them for interpolation tasks and comparing the results to other autoencoders on both synthetic data and MNIST.