Abstract:Deterministic Rank Reduction Autoencoders (RRAEs) enforce by construction a regularization on the latent space by applying a truncated SVD. While this regularization makes Autoencoders more powerful, using them for generative purposes is counter-intuitive due to their deterministic nature. On the other hand, Variational Autoencoders (VAEs) are well known for their generative abilities by learning a probabilistic latent space. In this paper, we present Variational Rank Reduction Autoencoders (VRRAEs), a model that leverages the advantages of both RRAEs and VAEs. Our claims and results show that when carefully sampling the latent space of RRAEs and further regularizing with the Kullback-Leibler (KL) divergence (similarly to VAEs), VRRAEs outperform RRAEs and VAEs. Additionally, we show that the regularization induced by the SVD not only makes VRRAEs better generators than VAEs, but also reduces the possibility of posterior collapse. Our results include a synthetic dataset of a small size that showcases the robustness of VRRAEs against collapse, and three real-world datasets; the MNIST, CelebA, and CIFAR-10, over which VRRAEs are shown to outperform both VAEs and RRAEs on many random generation and interpolation tasks based on the FID score.
Abstract:Thermodynamics-informed neural networks employ inductive biases for the enforcement of the first and second principles of thermodynamics. To construct these biases, a metriplectic evolution of the system is assumed. This provides excellent results, when compared to uninformed, black box networks. While the degree of accuracy can be increased in one or two orders of magnitude, in the case of graph networks, this requires assembling global Poisson and dissipation matrices, which breaks the local structure of such networks. In order to avoid this drawback, a local version of the metriplectic biases has been developed in this work, which avoids the aforementioned matrix assembly, thus preserving the node-by-node structure of the graph networks. We apply this framework for examples in the fields of solid and fluid mechanics. Our approach demonstrates significant computational efficiency and strong generalization capabilities, accurately making inferences on examples significantly different from those encountered during training.