Abstract:Network Intrusion Detection Systems (NIDS) play a vital role in protecting digital infrastructures against increasingly sophisticated cyber threats. In this paper, we extend ODXU, a Neurosymbolic AI (NSAI) framework that integrates deep embedded clustering for feature extraction, symbolic reasoning using XGBoost, and comprehensive uncertainty quantification (UQ) to enhance robustness, interpretability, and generalization in NIDS. The extended ODXU incorporates score-based methods (e.g., Confidence Scoring, Shannon Entropy) and metamodel-based techniques, including SHAP values and Information Gain, to assess the reliability of predictions. Experimental results on the CIC-IDS-2017 dataset show that ODXU outperforms traditional neural models across six evaluation metrics, including classification accuracy and false omission rate. While transfer learning has seen widespread adoption in fields such as computer vision and natural language processing, its potential in cybersecurity has not been thoroughly explored. To bridge this gap, we develop a transfer learning strategy that enables the reuse of a pre-trained ODXU model on a different dataset. Our ablation study on ACI-IoT-2023 demonstrates that the optimal transfer configuration involves reusing the pre-trained autoencoder, retraining the clustering module, and fine-tuning the XGBoost classifier, and outperforms traditional neural models when trained with as few as 16,000 samples (approximately 50% of the training data). Additionally, results show that metamodel-based UQ methods consistently outperform score-based approaches on both datasets.
Abstract:Resource-constrained edge deployments demand AI solutions that balance high performance with stringent compute, memory, and energy limitations. In this survey, we present a comprehensive overview of the primary strategies for accelerating deep learning models under such constraints. First, we examine model compression techniques-pruning, quantization, tensor decomposition, and knowledge distillation-that streamline large models into smaller, faster, and more efficient variants. Next, we explore Neural Architecture Search (NAS), a class of automated methods that discover architectures inherently optimized for particular tasks and hardware budgets. We then discuss compiler and deployment frameworks, such as TVM, TensorRT, and OpenVINO, which provide hardware-tailored optimizations at inference time. By integrating these three pillars into unified pipelines, practitioners can achieve multi-objective goals, including latency reduction, memory savings, and energy efficiency-all while maintaining competitive accuracy. We also highlight emerging frontiers in hierarchical NAS, neurosymbolic approaches, and advanced distillation tailored to large language models, underscoring open challenges like pre-training pruning for massive networks. Our survey offers practical insights, identifies current research gaps, and outlines promising directions for building scalable, platform-independent frameworks to accelerate deep learning models at the edge.