Abstract:Automated Fact-Checking has largely focused on verifying general knowledge against static corpora, overlooking high-stakes domains like law where truth is evolving and technically complex. We introduce CaseFacts, a benchmark for verifying colloquial legal claims against U.S. Supreme Court precedents. Unlike existing resources that map formal texts to formal texts, CaseFacts challenges systems to bridge the semantic gap between layperson assertions and technical jurisprudence while accounting for temporal validity. The dataset consists of 6,294 claims categorized as Supported, Refuted, or Overruled. We construct this benchmark using a multi-stage pipeline that leverages Large Language Models (LLMs) to synthesize claims from expert case summaries, employing a novel semantic similarity heuristic to efficiently identify and verify complex legal overrulings. Experiments with state-of-the-art LLMs reveal that the task remains challenging; notably, augmenting models with unrestricted web search degrades performance compared to closed-book baselines due to the retrieval of noisy, non-authoritative precedents. We release CaseFacts to spur research into legal fact verification systems.
Abstract:Automated fact-checking benchmarks have largely ignored the challenge of verifying claims against real-world, high-volume structured data, instead focusing on small, curated tables. We introduce a new large-scale, multilingual dataset to address this critical gap. It contains 78,503 synthetic claims grounded in 434 complex OECD tables, which average over 500K rows each. We propose a novel, frame-guided methodology where algorithms programmatically select significant data points based on six semantic frames to generate realistic claims in English, Chinese, Spanish, and Hindi. Crucially, we demonstrate through knowledge-probing experiments that LLMs have not memorized these facts, forcing systems to perform genuine retrieval and reasoning rather than relying on parameterized knowledge. We provide a baseline SQL-generation system and show that our benchmark is highly challenging. Our analysis identifies evidence retrieval as the primary bottleneck, with models struggling to find the correct data in massive tables. This dataset provides a critical new resource for advancing research on this unsolved, real-world problem.




Abstract:Frame-semantic parsing is a critical task in natural language understanding, yet the ability of large language models (LLMs) to extract frame-semantic arguments remains underexplored. This paper presents a comprehensive evaluation of LLMs on frame-semantic argument identification, analyzing the impact of input representation formats, model architectures, and generalization to unseen and out-of-domain samples. Our experiments, spanning models from 0.5B to 78B parameters, reveal that JSON-based representations significantly enhance performance, and while larger models generally perform better, smaller models can achieve competitive results through fine-tuning. We also introduce a novel approach to frame identification leveraging predicted frame elements, achieving state-of-the-art performance on ambiguous targets. Despite strong generalization capabilities, our analysis finds that LLMs still struggle with out-of-domain data.