Abstract:Applications of Reinforcement Learning in the Finance Technology (Fintech) have acquired a lot of admiration lately. Undoubtedly Reinforcement Learning, through its vast competence and proficiency, has aided remarkable results in the field of Fintech. The objective of this systematic survey is to perform an exploratory study on a correlation between reinforcement learning and Fintech to highlight the prediction accuracy, complexity, scalability, risks, profitability and performance. Major uses of reinforcement learning in finance or Fintech include portfolio optimization, credit risk reduction, investment capital management, profit maximization, effective recommendation systems, and better price setting strategies. Several studies have addressed the actual contribution of reinforcement learning to the performance of financial institutions. The latest studies included in this survey are publications from 2018 onward. The survey is conducted using PRISMA technique which focuses on the reporting of reviews and is based on a checklist and four-phase flow diagram. The conducted survey indicates that the performance of RL-based strategies in Fintech fields proves to perform considerably better than other state-of-the-art algorithms. The present work discusses the use of reinforcement learning algorithms in diverse decision-making challenges in Fintech and concludes that the organizations dealing with finance can benefit greatly from Robo-advising, smart order channelling, market making, hedging and options pricing, portfolio optimization, and optimal execution.
Abstract:Traditional electrical power grids have long suffered from operational unreliability, instability, inflexibility, and inefficiency. Smart grids (or smart energy systems) continue to transform the energy sector with emerging technologies, renewable energy sources, and other trends. Artificial intelligence (AI) is being applied to smart energy systems to process massive and complex data in this sector and make smart and timely decisions. However, the lack of explainability and governability of AI is a major concern for stakeholders hindering a fast uptake of AI in the energy sector. This paper provides a review of AI explainability and governance in smart energy systems. We collect 3,568 relevant papers from the Scopus database, automatically discover 15 parameters or themes for AI governance in energy and elaborate the research landscape by reviewing over 100 papers and providing temporal progressions of the research. The methodology for discovering parameters or themes is based on "deep journalism", our data-driven deep learning-based big data analytics approach to automatically discover and analyse cross-sectional multi-perspective information to enable better decision-making and develop better instruments for governance. The findings show that research on AI explainability in energy systems is segmented and narrowly focussed on a few AI traits and energy system problems. This paper deepens our knowledge of AI governance in energy and is expected to help governments, industry, academics, energy prosumers, and other stakeholders to understand the landscape of AI in the energy sector, leading to better design, operations, utilisation, and risk management of energy systems.