Abstract:Fine-tuning large language models (LLMs) on reasoning benchmarks via reinforcement learning requires a specific reward function, often binary, for each benchmark. This comes with two potential limitations: the need to design the reward, and the potentially sparse nature of binary rewards. Here, we systematically investigate rewards derived from the probability or log-probability of emitting the reference answer (or any other prompt continuation present in the data), which have the advantage of not relying on specific verifiers and being available at scale. Several recent works have advocated for the use of similar rewards (e.g., VeriFree, JEPO, RLPR, NOVER). We systematically compare variants of likelihood-based rewards with standard baselines, testing performance both on standard mathematical reasoning benchmarks, and on long-form answers where no external verifier is available. We find that using the log-probability of the reference answer as the reward for chain-of-thought (CoT) learning is the only option that performs well in all setups. This reward is also consistent with the next-token log-likelihood loss used during pretraining. In verifiable settings, log-probability rewards bring comparable or better success rates than reinforcing with standard binary rewards, and yield much better perplexity. In non-verifiable settings, they perform on par with SFT. On the other hand, methods based on probability, such as VeriFree, flatline on non-verifiable settings due to vanishing probabilities of getting the correct answer. Overall, this establishes log-probability rewards as a viable method for CoT fine-tuning, bridging the short, verifiable and long, non-verifiable answer settings.
Abstract:Gradient-based optimization is the workhorse of deep learning, offering efficient and scalable training via backpropagation. However, its reliance on large volumes of labeled data raises privacy and security concerns such as susceptibility to data poisoning attacks and the risk of overfitting. In contrast, black box optimization methods, which treat the model as an opaque function, relying solely on function evaluations to guide optimization, offer a promising alternative in scenarios where data access is restricted, adversarial risks are high, or overfitting is a concern. However, black box methods also pose significant challenges, including poor scalability to high-dimensional parameter spaces, as prevalent in large language models (LLMs), and high computational costs due to reliance on numerous model evaluations. This paper introduces BBoxER, an evolutionary black-box method for LLM post-training that induces an information bottleneck via implicit compression of the training data. Leveraging the tractability of information flow, we provide strong theoretical bounds on generalization, differential privacy, susceptibility to data poisoning attacks, and robustness to extraction attacks. BBoxER operates on top of pre-trained LLMs, offering a lightweight and modular enhancement suitable for deployment in restricted or privacy-sensitive environments, in addition to non-vacuous generalization guarantees. In experiments with LLMs, we demonstrate empirically that Retrofitting methods are able to learn, showing how a few iterations of BBoxER improve performance and generalize well on a benchmark of reasoning datasets. This positions BBoxER as an attractive add-on on top of gradient-based optimization.