Abstract:Dialogue agents that support human users in solving complex tasks have received much attention recently. Many such tasks are NP-hard optimization problems that require careful collaborative exploration of the solution space. We introduce a novel dialogue game in which the agents collaboratively solve a two-player Traveling Salesman problem, along with an agent that combines LLM prompting with symbolic mechanisms for state tracking and grounding. Our best agent solves 45% of games optimally in self-play. It also demonstrates an ability to collaborate successfully with human users and generalize to unfamiliar graphs.