Abstract:LLM providers typically offer multiple LLM tiers, varying in performance and price. As NLP tasks become more complex and modularized, selecting the suitable LLM tier for each subtask is a key challenge to balance between cost and performance. To address the problem, we introduce LLM Automatic Transmission (LLM-AT) framework that automatically selects LLM tiers without training. LLM-AT consists of Starter, Generator, and Judge. The starter selects the initial LLM tier expected to solve the given question, the generator produces a response using the LLM of the selected tier, and the judge evaluates the validity of the response. If the response is invalid, LLM-AT iteratively upgrades to a higher-tier model, generates a new response, and re-evaluates until a valid response is obtained. Additionally, we propose accuracy estimator, which enables the suitable initial LLM tier selection without training. Given an input question, accuracy estimator estimates the expected accuracy of each LLM tier by computing the valid response rate across top-k similar queries from past inference records. Experiments demonstrate that LLM-AT achieves superior performance while reducing costs, making it a practical solution for real-world applications.
Abstract:End-to-end automatic speech recognition (E2E ASR) systems have significantly improved speech recognition through training on extensive datasets. Despite these advancements, they still struggle to accurately recognize domain specific words, such as proper nouns and technical terminologies. To address this problem, we propose a method to utilize the state-of-the-art Whisper without modifying its architecture, preserving its generalization performance while enabling it to leverage descriptions effectively. Moreover, we propose two additional training techniques to improve the domain specific ASR: decoder fine-tuning, and context perturbation. We also propose a method to use a Large Language Model (LLM) to generate descriptions with simple metadata, when descriptions are unavailable. Our experiments demonstrate that proposed methods notably enhance domain-specific ASR accuracy on real-life datasets, with LLM-generated descriptions outperforming human-crafted ones in effectiveness.