This project demonstrates how medical corpus hypothesis generation, a knowledge discovery field of AI, can be used to derive new research angles for landscape and urban planners. The hypothesis generation approach herein consists of a combination of deep learning with topic modeling, a probabilistic approach to natural language analysis that scans aggregated research databases for words that can be grouped together based on their subject matter commonalities; the word groups accordingly form topics that can provide implicit connections between two general research terms. The hypothesis generation system AGATHA was used to identify likely conceptual relationships between emerging infectious diseases (EIDs) and deforestation, with the objective of providing landscape planners guidelines for productive research directions to help them formulate research hypotheses centered on deforestation and EIDs that will contribute to the broader health field that asserts causal roles of landscape-level issues. This research also serves as a partial proof-of-concept for the application of medical database hypothesis generation to medicine-adjacent hypothesis discovery.
Quantum Machine Learning is an emerging sub-field in machine learning where one of the goals is to perform pattern recognition tasks by encoding data into quantum states. This extension from classical to quantum domain has been made possible due to the development of hybrid quantum-classical algorithms that allow a parameterized quantum circuit to be optimized using gradient based algorithms that run on a classical computer. The similarities in training of these hybrid algorithms and classical neural networks has further led to the development of Quantum Neural Networks (QNNs). However, in the current training regime for QNNs, the gradients w.r.t objective function have to be computed on the quantum device. This computation is highly non-scalable and is affected by hardware and sampling noise present in the current generation of quantum hardware. In this paper, we propose a training algorithm that does not rely on gradient information. Specifically, we introduce a novel meta-optimization algorithm that trains a \emph{meta-optimizer} network to output parameters for the quantum circuit such that the objective function is minimized. We empirically and theoretically show that we achieve a better quality minima in fewer circuit evaluations than existing gradient based algorithms on different datasets.
With the rapid development of machine learning, improving its explainability has become a crucial research goal. We study the problem of making the clusters more explainable by investigating the cluster descriptors. Given a set of objects $S$, a clustering of these objects $\pi$, and a set of tags $T$ that have not participated in the clustering algorithm. Each object in $S$ is associated with a subset of $T$. The goal is to find a representative set of tags for each cluster, referred to as the cluster descriptors, with the constraint that these descriptors we find are pairwise disjoint, and the total size of all the descriptors is minimized. In general, this problem is NP-hard. We propose a novel explainability model that reinforces the previous models in such a way that tags that do not contribute to explainability and do not sufficiently distinguish between clusters are not added to the optimal descriptors. The proposed model is formulated as a quadratic unconstrained binary optimization problem which makes it suitable for solving on modern optimization hardware accelerators. We experimentally demonstrate how a proposed explainability model can be solved on specialized hardware for accelerating combinatorial optimization, the Fujitsu Digital Annealer, and use real-life Twitter and PubMed datasets for use cases.
Barren plateaus are a notorious problem in the optimization of variational quantum algorithms and pose a critical obstacle in the quest for more efficient quantum machine learning algorithms. Many potential reasons for barren plateaus have been identified but few solutions have been proposed to avoid them in practice. Existing solutions are mainly focused on the initialization of unitary gate parameters without taking into account the changes induced by input data. In this paper, we propose an alternative strategy which initializes the parameters of a unitary gate by drawing from a beta distribution. The hyperparameters of the beta distribution are estimated from the data. To further prevent barren plateau during training we add a novel perturbation at every gradient descent step. Taking these ideas together, we empirically show that our proposed framework significantly reduces the possibility of a complex quantum neural network getting stuck in a barren plateau.
Query expansion is the process of reformulating the original query by adding relevant words. Choosing which terms to add in order to improve the performance of the query expansion methods or to enhance the quality of the retrieved results is an important aspect of any information retrieval system. Adding words that can positively impact the quality of the search query or are informative enough play an important role in returning or gathering relevant documents that cover a certain topic can result in improving the efficiency of the information retrieval system. Typically, query expansion techniques are used to add or substitute words to a given search query to collect relevant data. In this paper, we design and implement a pipeline of automated query expansion. We outline several tools using different methods to expand the query. Our methods depend on targeting emergent events in streaming data over time and finding the hidden topics from targeted documents using probabilistic topic models. We employ Dynamic Eigenvector Centrality to trigger the emergent events, and the Latent Dirichlet Allocation to discover the topics. Also, we use an external data source as a secondary stream to supplement the primary stream with relevant words and expand the query using the words from both primary and secondary streams. An experimental study is performed on Twitter data (primary stream) related to the events that happened during protests in Baltimore in 2015. The quality of the retrieved results was measured using a quality indicator of the streaming data: tweets count, hashtag count, and hashtag clustering.
The rapid growth of data in the recent years has led to the development of complex learning algorithms that are often used to make decisions in real world. While the positive impact of the algorithms has been tremendous, there is a need to mitigate any bias arising from either training samples or implicit assumptions made about the data samples. This need becomes critical when algorithms are used in automated decision making systems that can hugely impact people's lives. Many approaches have been proposed to make learning algorithms fair by detecting and mitigating bias in different stages of optimization. However, due to a lack of a universal definition of fairness, these algorithms optimize for a particular interpretation of fairness which makes them limited for real world use. Moreover, an underlying assumption that is common to all algorithms is the apparent equivalence of achieving fairness and removing bias. In other words, there is no user defined criteria that can be incorporated into the optimization procedure for producing a fair algorithm. Motivated by these shortcomings of existing methods, we propose the FAIRLEARN procedure that produces a fair algorithm by incorporating user constraints into the optimization procedure. Furthermore, we make the process interpretable by estimating the most predictive features from data. We demonstrate the efficacy of our approach on several real world datasets using different fairness criteria.
Machine learning actively impacts our everyday life in almost all endeavors and domains such as healthcare, finance, and energy. As our dependence on the machine learning increases, it is inevitable that these algorithms will be used to make decisions that will have a direct impact on the society spanning all resolutions from personal choices to world-wide policies. Hence, it is crucial to ensure that (un)intentional bias does not affect the machine learning algorithms especially when they are required to take decisions that may have unintended consequences. Algorithmic fairness techniques have found traction in the machine learning community and many methods and metrics have been proposed to ensure and evaluate fairness in algorithms and data collection. In this paper, we study the algorithmic fairness in a supervised learning setting and examine the effect of optimizing a classifier for the Equal Opportunity metric. We demonstrate that such a classifier has an increased false positive rate across sensitive groups and propose a conceptually simple method to mitigate this bias. We rigorously analyze the proposed method and evaluate it on several real world datasets demonstrating its efficacy.
In 2020, the White House released the, "Call to Action to the Tech Community on New Machine Readable COVID-19 Dataset," wherein artificial intelligence experts are asked to collect data and develop text mining techniques that can help the science community answer high-priority scientific questions related to COVID-19. The Allen Institute for AI and collaborators announced the availability of a rapidly growing open dataset of publications, the COVID-19 Open Research Dataset (CORD-19). As the pace of research accelerates, biomedical scientists struggle to stay current. To expedite their investigations, scientists leverage hypothesis generation systems, which can automatically inspect published papers to discover novel implicit connections. We present an automated general purpose hypothesis generation systems AGATHA-C and AGATHA-GP for COVID-19 research. The systems are based on graph-mining and the transformer model. The systems are massively validated using retrospective information rediscovery and proactive analysis involving human-in-the-loop expert analysis. Both systems achieve high-quality predictions across domains (in some domains up to 0.97% ROC AUC) in fast computational time and are released to the broad scientific community to accelerate biomedical research. In addition, by performing the domain expert curated study, we show that the systems are able to discover on-going research findings such as the relationship between COVID-19 and oxytocin hormone.
We study the relationship between the Quantum Approximate Optimization Algorithm (QAOA) and the underlying symmetries of the objective function to be optimized. Our approach formalizes the connection between quantum symmetry properties of the QAOA dynamics and the group of classical symmetries of the objective function. The connection is general and includes but is not limited to problems defined on graphs. We show a series of results exploring the connection and highlight examples of hard problem classes where a nontrivial symmetry subgroup can be obtained efficiently. In particular we show how classical objective function symmetries lead to invariant measurement outcome probabilities across states connected by such symmetries, independent of the choice of algorithm parameters or number of layers. To illustrate the power of the developed connection, we apply machine learning techniques towards predicting QAOA performance based on symmetry considerations. We provide numerical evidence that a small set of graph symmetry properties suffices to predict the minimum QAOA depth required to achieve a target approximation ratio on the MaxCut problem, in a practically important setting where QAOA parameter schedules are constrained to be linear and hence easier to optimize.
Text preprocessing is an essential step in text mining. Removing words that can negatively impact the quality of prediction algorithms or are not informative enough is a crucial storage-saving technique in text indexing and results in improved computational efficiency. Typically, a generic stop word list is applied to a dataset regardless of the domain. However, many common words are different from one domain to another but have no significance within a particular domain. Eliminating domain-specific common words in a corpus reduces the dimensionality of the feature space, and improves the performance of text mining tasks. In this paper, we present a novel mathematical approach for the automatic extraction of domain-specific words called the hyperplane-based approach. This new approach depends on the notion of low dimensional representation of the word in vector space and its distance from hyperplane. The hyperplane-based approach can significantly reduce text dimensionality by eliminating irrelevant features. We compare the hyperplane-based approach with other feature selection methods, namely \c{hi}2 and mutual information. An experimental study is performed on three different datasets and five classification algorithms, and measure the dimensionality reduction and the increase in the classification performance. Results indicate that the hyperplane-based approach can reduce the dimensionality of the corpus by 90% and outperforms mutual information. The computational time to identify the domain-specific words is significantly lower than mutual information.