Abstract:Despite their impressive capabilities, Large Language Models (LLMs) exhibit unwanted uncertainty, a phenomenon where a model changes a previously correct answer into an incorrect one when re-prompted. This behavior undermines trust and poses serious risks in high-stakes domains. In this work, we investigate the mechanisms that drive this phenomenon. We adapt the Needle-in-a-Haystack retrieval framework and integrate a Flip-style re-evaluation prompt to simulate realistic answer-flipping scenarios. We find that retrieval heads are not primarily responsible for avoiding uncertainty. Instead, we identify a small set of non-retrieval attention heads that disproportionately attend to misleading tokens in uncertain contexts. Masking these heads yields significant improvements, reducing flip behavior by up to 15% without introducing incoherence or overcorrection. However, when tested for downstream tasks, we observe trade-offs with flip behavior. Our findings contribute to the growing field of mechanistic interpretability and present a simple yet effective technique for mitigating uncertainty-driven failure modes in LLMs.
Abstract:We propose a deep architecture for depression detection from social media posts. The proposed architecture builds upon BERT to extract language representations from social media posts and combines these representations using an attentive bidirectional GRU network. We incorporate affective information, by augmenting the text representations with features extracted from a pretrained emotion classifier. Motivated by psychological literature we propose to incorporate profanity and morality features of posts and words in our architecture using a late fusion scheme. Our analysis indicates that morality and profanity can be important features for depression detection. We apply our model for depression detection on Reddit posts on the Pirina dataset, and further consider the setting of detecting depressed users, given multiple posts per user, proposed in the Reddit RSDD dataset. The inclusion of the proposed features yields state-of-the-art results in both settings, namely 2.65% and 6.73% absolute improvement in F1 score respectively. Index Terms: Depression detection, BERT, Feature fusion, Emotion recognition, profanity, morality