Abstract:Mangroves are critical for climate-change mitigation, requiring reliable monitoring for effective conservation. While deep learning has emerged as a powerful tool for mangrove detection, its progress is hindered by the limitations of existing datasets. In particular, many resources provide only annual map products without curated single-date image-mask pairs, limited to specific regions rather than global coverage, or remain inaccessible to the public. To address these challenges, we introduce MANGO, a large-scale global dataset comprising 42,703 labeled image-mask pairs across 124 countries. To construct this dataset, we retrieve all available Sentinel-2 imagery within the year 2020 for mangrove regions and select the best single-date observations that align with the mangrove annual mask. This selection is performed using a target detection-driven approach that leverages pixel-wise coordinate references to ensure adaptive and representative image-mask pairings. We also provide a benchmark across diverse semantic segmentation architectures under a country-disjoint split, establishing a foundation for scalable and reliable global mangrove monitoring.
Abstract:With the growing prominence of antibody-based therapeutics, antibody engineering has gained increasing attention as a critical area of research and development. Recent progress in transformer-based protein large language models (LLMs) has demonstrated promising applications in protein sequence design and structural prediction. Moreover, the availability of large-scale antibody datasets such as the Observed Antibody Space (OAS) database has opened new avenues for the development of LLMs specialized for processing antibody sequences. Among these, RoBERTa has demonstrated improved performance relative to BERT, while maintaining a smaller parameter count (125M) compared to the BERT-based protein model, ProtBERT (420M). This reduced model size enables more efficient deployment in antibody-related applications. However, despite the numerous advantages of the RoBERTa architecture, antibody-specific foundational models built upon it have remained inaccessible to the research community. In this study, we introduce Ab-RoBERTa, a RoBERTa-based antibody-specific LLM, which is publicly available at https://huggingface.co/mogam-ai/Ab-RoBERTa. This resource is intended to support a wide range of antibody-related research applications including paratope prediction or humanness assessment.