Abstract:Fast adversarial training (FAT) aims to enhance the robustness of models against adversarial attacks with reduced training time, however, FAT often suffers from compromised robustness due to insufficient exploration of adversarial space. In this paper, we develop a loss function to mitigate the problem of degraded robustness under FAT. Specifically, we derive a quadratic upper bound (QUB) on the adversarial training (AT) loss function and propose to utilize the bound with existing FAT methods. Our experimental results show that applying QUB loss to the existing methods yields significant improvement of robustness. Furthermore, using various metrics, we demonstrate that this improvement is likely to result from the smoothened loss landscape of the resulting model.



Abstract:Identifying the location of a disturbance and its magnitude is an important component for stable operation of power systems. We study the problem of localizing and estimating a disturbance in the interconnected power system. We take a model-free approach to this problem by using frequency data from generators. Specifically, we develop a logistic regression based method for localization and a linear regression based method for estimation of the magnitude of disturbance. Our model-free approach does not require the knowledge of system parameters such as inertia constants and topology, and is shown to achieve highly accurate localization and estimation performance even in the presence of measurement noise and missing data.