Abstract:Large language models often retain unintended content, prompting growing interest in knowledge unlearning. Recent approaches emphasize localized unlearning, which restricts parameter updates to specific regions in an effort to remove target knowledge while preserving unrelated general knowledge. However, their effectiveness remains uncertain due to the lack of robust and thorough evaluation of the trade-off between the competing goals of unlearning. In this paper, we begin by revisiting existing localized unlearning approaches. We then conduct controlled experiments to rigorously evaluate whether local parameter updates causally contribute to unlearning. Our findings reveal that the set of parameters that must be modified for effective unlearning is not strictly determined, challenging the core assumption of localized unlearning that parameter locality is inherently indicative of effective knowledge removal.
Abstract:We introduce HyperCLOVA X, a family of large language models (LLMs) tailored to the Korean language and culture, along with competitive capabilities in English, math, and coding. HyperCLOVA X was trained on a balanced mix of Korean, English, and code data, followed by instruction-tuning with high-quality human-annotated datasets while abiding by strict safety guidelines reflecting our commitment to responsible AI. The model is evaluated across various benchmarks, including comprehensive reasoning, knowledge, commonsense, factuality, coding, math, chatting, instruction-following, and harmlessness, in both Korean and English. HyperCLOVA X exhibits strong reasoning capabilities in Korean backed by a deep understanding of the language and cultural nuances. Further analysis of the inherent bilingual nature and its extension to multilingualism highlights the model's cross-lingual proficiency and strong generalization ability to untargeted languages, including machine translation between several language pairs and cross-lingual inference tasks. We believe that HyperCLOVA X can provide helpful guidance for regions or countries in developing their sovereign LLMs.