Abstract:High-resolution remote sensing imagery is characterized by densely distributed land-cover objects and complex boundaries, which places higher demands on both geometric localization and semantic prediction. Existing training-free open-vocabulary semantic segmentation (OVSS) methods typically fuse CLIP and vision foundation models (VFMs) using "one-way injection" and "shallow post-processing" strategies, making it difficult to satisfy these requirements. To address this issue, we propose a spatial-regularization-aware dual-branch collaborative inference framework for training-free OVSS, termed SDCI. First, during feature encoding, SDCI introduces a cross-model attention fusion (CAF) module, which guides collaborative inference by injecting self-attention maps into each other. Second, we propose a bidirectional cross-graph diffusion refinement (BCDR) module that enhances the reliability of dual-branch segmentation scores through iterative random-walk diffusion. Finally, we incorporate low-level superpixel structures and develop a convex-optimization-based superpixel collaborative prediction (CSCP) mechanism to further refine object boundaries. Experiments on multiple remote sensing semantic segmentation benchmarks demonstrate that our method achieves better performance than existing approaches. Moreover, ablation studies further confirm that traditional object-based remote sensing image analysis methods leveraging superpixel structures remain effective within deep learning frameworks. Code: https://github.com/yu-ni1989/SDCI.




Abstract:Large-scale high-resolution land cover classification is a prerequisite for constructing Earth system models and addressing ecological and resource issues. Advancements in satellite sensor technology have led to an improvement in spatial resolution and wider coverage areas. Nevertheless, the lack of high-resolution labeled data is still a challenge, hindering the largescale application of land cover classification methods. In this paper, we propose a Transformerbased weakly supervised method for cross-resolution land cover classification using outdated data. First, to capture long-range dependencies without missing the fine-grained details of objects, we propose a U-Net-like Transformer based on a reverse difference mechanism (RDM) using dynamic sparse attention. Second, we propose an anti-noise loss calculation (ANLC) module based on optimal transport (OT). Anti-noise loss calculation identifies confident areas (CA) and vague areas (VA) based on the OT matrix, which relieves the impact of noises in outdated land cover products. By introducing a weakly supervised loss with weights and employing unsupervised loss, the RDM-based U-Net-like Transformer was trained. Remote sensing images with 1 m resolution and the corresponding ground-truths of six states in the United States were employed to validate the performance of the proposed method. The experiments utilized outdated land cover products with 30 m resolution from 2013 as training labels, and produced land cover maps with 1 m resolution from 2017. The results show the superiority of the proposed method compared to state-of-the-art methods. The code is available at https://github.com/yu-ni1989/ANLC-Former.