Abstract:Retrieval-augmented generation (RAG) has rapidly emerged as a transformative approach for integrating large language models into clinical and biomedical workflows. However, privacy risks, such as protected health information (PHI) exposure, remain inconsistently mitigated. This review provides a thorough analysis of the current landscape of RAG applications in healthcare, including (i) sensitive data type across clinical scenarios, (ii) the associated privacy risks, (iii) current and emerging data-privacy protection mechanisms and (iv) future direction for patient data privacy protection. We synthesize 23 articles on RAG applications in healthcare and systematically analyze privacy challenges through a pipeline-structured framework encompassing data storage, transmission, retrieval and generation stages, delineating potential failure modes, their underlying causes in threat models and system mechanisms, and their practical implications. Building on this analysis, we critically review 17 articles on privacy-preserving strategies for RAG systems. Our evaluation reveals critical gaps, including insufficient clinical validation, absence of standardized evaluation frameworks, and lack of automated assessment tools. We propose actionable directions based on these limitations and conclude with a call to action. This review provides researchers and practitioners with a structured framework for understanding privacy vulnerabilities in healthcare RAG and offers a roadmap toward developing systems that achieve both clinical effectiveness and robust privacy preservation.
Abstract:Large Language Models (LLMs) are increasingly vulnerable to adversarial attacks that can subtly manipulate their outputs. While various defense mechanisms have been proposed, many operate as black boxes, lacking transparency in their decision-making. This paper introduces ExplainableGuard, an interpretable adversarial defense framework leveraging the chain-of-thought (CoT) reasoning capabilities of DeepSeek-Reasoner. Our approach not only detects and neutralizes adversarial perturbations in text but also provides step-by-step explanations for each defense action. We demonstrate how tailored CoT prompts guide the LLM to perform a multi-faceted analysis (character, word, structural, and semantic) and generate a purified output along with a human-readable justification. Preliminary results on the GLUE Benchmark and IMDB Movie Reviews dataset show promising defense efficacy. Additionally, a human evaluation study reveals that ExplainableGuard's explanations outperform ablated variants in clarity, specificity, and actionability, with a 72.5% deployability-trust rating, underscoring its potential for more trustworthy LLM deployments.