Abstract:Multimodal large language models have demonstrated comparable performance to that of radiology trainees on multiple-choice board-style exams. However, to develop clinically useful multimodal LLM tools, high-quality benchmarks curated by domain experts are essential. To curate released and holdout datasets of 100 chest radiographic studies each and propose an artificial intelligence (AI)-assisted expert labeling procedure to allow radiologists to label studies more efficiently. A total of 13,735 deidentified chest radiographs and their corresponding reports from the MIDRC were used. GPT-4o extracted abnormal findings from the reports, which were then mapped to 12 benchmark labels with a locally hosted LLM (Phi-4-Reasoning). From these studies, 1,000 were sampled on the basis of the AI-suggested benchmark labels for expert review; the sampling algorithm ensured that the selected studies were clinically relevant and captured a range of difficulty levels. Seventeen chest radiologists participated, and they marked "Agree all", "Agree mostly" or "Disagree" to indicate their assessment of the correctness of the LLM suggested labels. Each chest radiograph was evaluated by three experts. Of these, at least two radiologists selected "Agree All" for 381 radiographs. From this set, 200 were selected, prioritizing those with less common or multiple finding labels, and divided into 100 released radiographs and 100 reserved as the holdout dataset. The holdout dataset is used exclusively by RSNA to independently evaluate different models. A benchmark of 200 chest radiographic studies with 12 benchmark labels was created and made publicly available https://imaging.rsna.org, with each chest radiograph verified by three radiologists. In addition, an AI-assisted labeling procedure was developed to help radiologists label at scale, minimize unnecessary omissions, and support a semicollaborative environment.
Abstract:Thoracic aortic aneurysm (TAA) is a fatal disease which potentially leads to dissection or rupture through progressive enlargement of the aorta. It is usually asymptomatic and screening recommendation are limited. The gold-standard evaluation is performed by computed tomography angiography (CTA) and radiologists time-consuming assessment. Scans for other indications could help on this screening, however if acquired without contrast enhancement or with low dose protocol, it can make the clinical evaluation difficult, besides increasing the scans quantity for the radiologists. In this study, it was selected 587 unique CT scans including control and TAA patients, acquired with low and standard dose protocols, with or without contrast enhancement. A novel segmentation model, DeepVox, exhibited dice score coefficients of 0.932 and 0.897 for development and test sets, respectively, with faster training speed in comparison to models reported in the literature. The novel TAA classification model, SAVE-CT, presented accuracies of 0.930 and 0.922 for development and test sets, respectively, using only the binary segmentation mask from DeepVox as input, without hand-engineered features. These two models together are a potential approach for TAA screening, as they can handle variable number of slices as input, handling thoracic and thoracoabdominal sequences, in a fully automated contrast- and dose-independent evaluation. This may assist to decrease TAA mortality and prioritize the evaluation queue of patients for radiologists.