Abstract:Automated evaluation of movement quality holds significant potential for enhancing physiotherapeutic treatments and sports training by providing objective, real-time feedback. However, the effectiveness of deep learning models in assessing movements captured by inertial measurement units (IMUs) is often hampered by limited data availability, class imbalance, and label ambiguity. In this work, we present a novel data augmentation method that generates realistic IMU data using musculoskeletal simulations integrated with systematic modifications of movement trajectories. Crucially, our approach ensures biomechanical plausibility and allows for automatic, reliable labeling by combining inverse kinematic parameters with a knowledge-based evaluation strategy. Extensive evaluations demonstrate that augmented variants closely resembles real-world data, significantly improving the classification accuracy and generalization capability of neural network models. Additionally, we highlight the benefits of augmented data for patient-specific fine-tuning scenarios, particularly when only limited subject-specific training examples are available. Our findings underline the practicality and efficacy of this augmentation method in overcoming common challenges faced by deep learning applications in physiotherapeutic exercise evaluation.
Abstract:Denoising diffusion probabilistic models are able to generate synthetic sensor signals. The training process of such a model is controlled by a loss function which measures the difference between the noise that was added in the forward process and the noise that was predicted by the diffusion model. This enables the generation of realistic data. However, the randomness within the process and the loss function itself makes it difficult to estimate the quality of the data. Therefore, we examine multiple similarity metrics and adapt an existing metric to overcome this issue by monitoring the training and synthetisation process using those metrics. The adapted metric can even be fine-tuned on the input data to comply with the requirements of an underlying classification task. We were able to significantly reduce the amount of training epochs without a performance reduction in the classification task. An optimized training process not only saves resources, but also reduces the time for training generative models.
Abstract:Kinematic sensors are often used to analyze movement behaviors in sports and daily activities due to their ease of use and lack of spatial restrictions, unlike video-based motion capturing systems. Still, the generation, and especially the labeling of motion data for specific activities can be time-consuming and costly. Additionally, many models struggle with limited data, which limits their performance in recognizing complex movement patterns. To address those issues, generating synthetic data can help expand the diversity and variability. In this work, we propose IMUDiffusion, a probabilistic diffusion model specifically designed for multivariate time series generation. Our approach enables the generation of high-quality time series sequences which accurately capture the dynamics of human activities. Moreover, by joining our dataset with synthetic data, we achieve a significant improvement in the performance of our baseline human activity classifier. In some cases, we are able to improve the macro F1-score by almost 30%. IMUDiffusion provides a valuable tool for generating realistic human activity movements and enhance the robustness of models in scenarios with limited training data.