Abstract:Automated evaluation of movement quality holds significant potential for enhancing physiotherapeutic treatments and sports training by providing objective, real-time feedback. However, the effectiveness of deep learning models in assessing movements captured by inertial measurement units (IMUs) is often hampered by limited data availability, class imbalance, and label ambiguity. In this work, we present a novel data augmentation method that generates realistic IMU data using musculoskeletal simulations integrated with systematic modifications of movement trajectories. Crucially, our approach ensures biomechanical plausibility and allows for automatic, reliable labeling by combining inverse kinematic parameters with a knowledge-based evaluation strategy. Extensive evaluations demonstrate that augmented variants closely resembles real-world data, significantly improving the classification accuracy and generalization capability of neural network models. Additionally, we highlight the benefits of augmented data for patient-specific fine-tuning scenarios, particularly when only limited subject-specific training examples are available. Our findings underline the practicality and efficacy of this augmentation method in overcoming common challenges faced by deep learning applications in physiotherapeutic exercise evaluation.
Abstract:Denoising diffusion probabilistic models are able to generate synthetic sensor signals. The training process of such a model is controlled by a loss function which measures the difference between the noise that was added in the forward process and the noise that was predicted by the diffusion model. This enables the generation of realistic data. However, the randomness within the process and the loss function itself makes it difficult to estimate the quality of the data. Therefore, we examine multiple similarity metrics and adapt an existing metric to overcome this issue by monitoring the training and synthetisation process using those metrics. The adapted metric can even be fine-tuned on the input data to comply with the requirements of an underlying classification task. We were able to significantly reduce the amount of training epochs without a performance reduction in the classification task. An optimized training process not only saves resources, but also reduces the time for training generative models.
Abstract:(1) Background: The success of physiotherapy depends on the regular and correct performance of movement exercises. A system that automatically evaluates these could support the therapy. Previous approaches in this area rarely rely on Deep Learning methods and do not yet fully use their potential. (2) Methods: Using a measurement system consisting of 17 IMUs, a dataset of four Functional Movement Screening (FMS) exercises is recorded. Exercise execution is evaluated by physiotherapists using the FMS criteria. This dataset is used to train a neural network that assigns the correct FMS score to an exercise repetition. We use an architecture consisting of CNN, LSTM and Dense layers. Based on this framework, we apply various methods to optimize the performance of the network. For the optimization, we perform a extensive hyperparameter optimization. In addition, we are comparing different CNN structures that have been specifically adapted for use with IMU data. Finally, the developed network is trained with the data of different FMS exercises and the performance is compared. (3) Results: The evaluation shows that the presented approach achieves a convincing performance in the classification of unknown repetitions of already known subjects. However, the trained network is yet unable to achieve consistent performance on the data of a previously unknown subjects. Additionally, it can be seen that the performance of the network differs significantly depending on the exercise it is trained for.