Abstract:Accuracy and efficiency of the conventional physics-informed neural network (PINN) need to be improved before it can be a competitive alternative for soil consolidation analyses. This paper aims to overcome these limitations by proposing a highly accurate and efficient physics-informed machine learning (PIML) approach, termed time-stepping physics-informed extreme learning machine (TS-PIELM). In the TS-PIELM framework the consolidation process is divided into numerous time intervals, which helps overcome the limitation of PIELM in solving differential equations with sharp gradients. To accelerate network training, the solution is approximated by a single-layer feedforward extreme learning machine (ELM), rather than using a fully connected neural network in PINN. The input layer weights of the ELM network are generated randomly and fixed during the training process. Subsequently, the output layer weights are directly computed by solving a system of linear equations, which significantly enhances the training efficiency compared to the time-consuming gradient descent method in PINN. Finally, the superior performance of TS-PIELM is demonstrated by solving three typical Terzaghi consolidation problems. Compared to PINN, results show that the computational efficiency and accuracy of the novel TS-PIELM framework are improved by more than 1000 times and 100 times for one-dimensional cases, respectively. This paper provides compelling evidence that PIML can be a powerful tool for computational geotechnics.
Abstract:The longstanding goals of federated learning (FL) require rigorous privacy guarantees and low communication overhead while holding a relatively high model accuracy. However, simultaneously achieving all the goals is extremely challenging. In this paper, we propose a novel framework called hierarchical federated learning (H-FL) to tackle this challenge. Considering the degradation of the model performance due to the statistic heterogeneity of the training data, we devise a runtime distribution reconstruction strategy, which reallocates the clients appropriately and utilizes mediators to rearrange the local training of the clients. In addition, we design a compression-correction mechanism incorporated into H-FL to reduce the communication overhead while not sacrificing the model performance. To further provide privacy guarantees, we introduce differential privacy while performing local training, which injects moderate amount of noise into only part of the complete model. Experimental results show that our H-FL framework achieves the state-of-art performance on different datasets for the real-world image recognition tasks.
Abstract:Deep learning, as a promising new area of machine learning, has attracted a rapidly increasing attention in the field of medical imaging. Compared to the conventional machine learning methods, deep learning requires no hand-tuned feature extractor, and has shown a superior performance in many visual object recognition applications. In this study, we develop a deep convolutional neural network (CNN) and apply it to thoracic CT images for the classification of lung nodules. We present the CNN architecture and classification accuracy for the original images of lung nodules. In order to understand the features of lung nodules, we further construct new datasets, based on the combination of artificial geometric nodules and some transformations of the original images, as well as a stochastic nodule shape model. It is found that simplistic geometric nodules cannot capture the important features of lung nodules.