Abstract:The problems that tobacco workshops encounter include poor curing, inconsistencies in supplies, irregular scheduling, and a lack of oversight, all of which drive up expenses and worse quality. Large quantities make manual examination costly, sluggish, and unreliable. Deep convolutional neural networks have recently made strides in capabilities that transcend those of conventional methods. To effectively enhance them, nevertheless, extensive customization is needed to account for subtle variations in tobacco grade. This study introduces InspectionV3, an integrated solution for automated flue-cured tobacco grading that makes use of a customized deep convolutional neural network architecture. A scope that covers color, maturity, and curing subtleties is established via a labelled dataset consisting of 21,113 images spanning 20 quality classes. Expert annotators performed preprocessing on the tobacco leaf images, including cleaning, labelling, and augmentation. Multi-layer CNN factors use batch normalization to describe domain properties like as permeability and moisture spots, and so account for the subtleties of the workshop. Its expertise lies in converting visual patterns into useful information for enhancing workflow. Fast notifications are made possible by real-time, on-the-spot grading that matches human expertise. Images-powered analytics dashboards facilitate the tracking of yield projections, inventories, bottlenecks, and the optimization of data-driven choices. More labelled images are assimilated after further retraining, improving representational capacities and enabling adaptations for seasonal variability. Metrics demonstrate 97% accuracy, 95% precision and recall, 96% F1-score and AUC, 95% specificity; validating real-world viability.
Abstract:Several deep learning algorithms have shown amazing performance for existing object detection tasks, but recognizing darker objects is the largest challenge. Moreover, those techniques struggled to detect or had a slow recognition rate, resulting in significant performance losses. As a result, an improved and accurate detection approach is required to address the above difficulty. The whole study proposes a combination of spiked and normal convolution layers as an energy-efficient and reliable object detector model. The proposed model is split into two sections. The first section is developed as a feature extractor, which utilizes pre-trained VGG16, and the second section of the proposal structure is the combination of spiked and normal Convolutional layers to detect the bounding boxes of images. We drew a pre-trained model for classifying detected objects. With state of the art Python libraries, spike layers can be trained efficiently. The proposed spike convolutional object detector (SCOD) has been evaluated on VOC and Ex-Dark datasets. SCOD reached 66.01% and 41.25% mAP for detecting 20 different objects in the VOC-12 and 12 objects in the Ex-Dark dataset. SCOD uses 14 Giga FLOPS for its forward path calculations. Experimental results indicated superior performance compared to Tiny YOLO, Spike YOLO, YOLO-LITE, Tinier YOLO and Center of loc+Xception based on mAP for the VOC dataset.