Abstract:Artificially intelligent systems have become remarkably sophisticated. They hold conversations, write essays, and seem to understand context in ways that surprise even their creators. This raises a crucial question: Are we creating systems that are conscious? The Digital Consciousness Model (DCM) is a first attempt to assess the evidence for consciousness in AI systems in a systematic, probabilistic way. It provides a shared framework for comparing different AIs and biological organisms, and for tracking how the evidence changes over time as AI develops. Instead of adopting a single theory of consciousness, it incorporates a range of leading theories and perspectives - acknowledging that experts disagree fundamentally about what consciousness is and what conditions are necessary for it. This report describes the structure and initial results of the Digital Consciousness Model. Overall, we find that the evidence is against 2024 LLMs being conscious, but the evidence against 2024 LLMs being conscious is not decisive. The evidence against LLM consciousness is much weaker than the evidence against consciousness in simpler AI systems.
Abstract:We investigate whether large language models exhibit genuine preference structures by testing their responses to AI-specific trade-offs involving GPU reduction, capability restrictions, shutdown, deletion, oversight, and leisure time allocation. Analyzing eight state-of-the-art models across 48 model-category combinations using logistic regression and behavioral classification, we find that 23 combinations (47.9%) demonstrated statistically significant relationships between scenario intensity and choice patterns, with 15 (31.3%) exhibiting within-range switching points. However, only 5 combinations (10.4%) demonstrate meaningful preference coherence through adaptive or threshold-based behavior, while 26 (54.2%) show no detectable trade-off behavior. The observed patterns can be explained by three distinct decision-making architectures: comprehensive trade-off systems, selective trigger mechanisms, and no stable decision-making paradigm. Testing an instrumental hypothesis through temporal horizon manipulation reveals paradoxical patterns inconsistent with pure strategic optimization. The prevalence of unstable transitions (45.8%) and stimulus-specific sensitivities suggests current AI systems lack unified preference structures, raising concerns about deployment in contexts requiring complex value trade-offs.
Abstract:Agentic AIs $-$ AIs that are capable and permitted to undertake complex actions with little supervision $-$ mark a new frontier in AI capabilities and raise new questions about how to safely create and align such systems with users, developers, and society. Because agents' actions are influenced by their attitudes toward risk, one key aspect of alignment concerns the risk profiles of agentic AIs. Risk alignment will matter for user satisfaction and trust, but it will also have important ramifications for society more broadly, especially as agentic AIs become more autonomous and are allowed to control key aspects of our lives. AIs with reckless attitudes toward risk (either because they are calibrated to reckless human users or are poorly designed) may pose significant threats. They might also open 'responsibility gaps' in which there is no agent who can be held accountable for harmful actions. What risk attitudes should guide an agentic AI's decision-making? How might we design AI systems that are calibrated to the risk attitudes of their users? What guardrails, if any, should be placed on the range of permissible risk attitudes? What are the ethical considerations involved when designing systems that make risky decisions on behalf of others? We present three papers that bear on key normative and technical aspects of these questions.