Abstract:Recent advancements in open-source Visual Language Models (VLMs) such as LLaVA, Qwen-VL, and Llama have catalyzed extensive research on their integration with diverse systems. The internet-scale general knowledge encapsulated within these models presents significant opportunities for enhancing autonomous driving perception, prediction, and planning capabilities. In this paper we propose VLAD, a vision-language autonomous driving model, which integrates a fine-tuned VLM with VAD, a state-of-the-art end-to-end system. We implement a specialized fine-tuning approach using custom question-answer datasets designed specifically to improve the spatial reasoning capabilities of the model. The enhanced VLM generates high-level navigational commands that VAD subsequently processes to guide vehicle operation. Additionally, our system produces interpretable natural language explanations of driving decisions, thereby increasing transparency and trustworthiness of the traditionally black-box end-to-end architecture. Comprehensive evaluation on the real-world nuScenes dataset demonstrates that our integrated system reduces average collision rates by 31.82% compared to baseline methodologies, establishing a new benchmark for VLM-augmented autonomous driving systems.