Abstract:Recent advances in vision-language navigation (VLN) were mainly attributed to emerging large language models (LLMs). These methods exhibited excellent generalization capabilities in instruction understanding and task reasoning. However, they were constrained by the fixed knowledge bases and reasoning abilities of LLMs, preventing fully incorporating experiential knowledge and thus resulting in a lack of efficient evolutionary capacity. To address this, we drew inspiration from the evolution capabilities of natural agents, and proposed a self-evolving VLN framework (SE-VLN) to endow VLN agents with the ability to continuously evolve during testing. To the best of our knowledge, it was the first time that an multimodal LLM-powered self-evolving VLN framework was proposed. Specifically, SE-VLN comprised three core modules, i.e., a hierarchical memory module to transfer successful and failure cases into reusable knowledge, a retrieval-augmented thought-based reasoning module to retrieve experience and enable multi-step decision-making, and a reflection module to realize continual evolution. Comprehensive tests illustrated that the SE-VLN achieved navigation success rates of 57% and 35.2% in unseen environments, representing absolute performance improvements of 23.9% and 15.0% over current state-of-the-art methods on R2R and REVERSE datasets, respectively. Moreover, the SE-VLN showed performance improvement with increasing experience repository, elucidating its great potential as a self-evolving agent framework for VLN.
Abstract:The reliability of substation equipment is crucial to the stability of power systems, but traditional fault analysis methods heavily rely on manual expertise, limiting their effectiveness in handling complex and large-scale data. This paper proposes a substation equipment fault analysis method based on a multimodal large language model (MLLM). We developed a database containing 40,000 entries, including images, defect labels, and analysis reports, and used an image-to-video generation model for data augmentation. Detailed fault analysis reports were generated using GPT-4. Based on this database, we developed SubstationAI, the first model dedicated to substation fault analysis, and designed a fault diagnosis knowledge base along with knowledge enhancement methods. Experimental results show that SubstationAI significantly outperforms existing models, such as GPT-4, across various evaluation metrics, demonstrating higher accuracy and practicality in fault cause analysis, repair suggestions, and preventive measures, providing a more advanced solution for substation equipment fault analysis.