Abstract:In this work, we specialize contributions from prior work on data-driven trajectory generation for a quadrotor system with motor saturation constraints. When motors saturate in quadrotor systems, there is an ``uncontrolled drift" of the vehicle that results in a crash. To tackle saturation, we apply a control decomposition and learn a tracking penalty from simulation data consisting of low, medium and high-cost reference trajectories. Our approach reduces crash rates by around $49\%$ compared to baselines on aggressive maneuvers in simulation. On the Crazyflie hardware platform, we demonstrate feasibility through experiments that lead to successful flights. Motivated by the growing interest in data-driven methods to quadrotor planning, we provide open-source lightweight code with an easy-to-use abstraction of hardware platforms.
Abstract:Motivated by the increasing use of quadrotors for payload delivery, we consider a joint trajectory generation and feedback control design problem for a quadrotor experiencing aerodynamic wrenches. Unmodeled aerodynamic drag forces from carried payloads can lead to catastrophic outcomes. Prior work model aerodynamic effects as residual dynamics or external disturbances in the control problem leading to a reactive policy that could be catastrophic. Moreover, redesigning controllers and tuning control gains on hardware platforms is a laborious effort. In this paper, we argue that adapting the trajectory generation component keeping the controller fixed can improve trajectory tracking for quadrotor systems experiencing drag forces. To achieve this, we formulate a drag-aware planning problem by applying a suitable relaxation to an optimal quadrotor control problem, introducing a tracking cost function which measures the ability of a controller to follow a reference trajectory. This tracking cost function acts as a regularizer in trajectory generation and is learned from data obtained from simulation. Our experiments in both simulation and on the Crazyflie hardware platform show that changing the planner reduces tracking error by as much as 83%. Evaluation on hardware demonstrates that our planned path, as opposed to a baseline, avoids controller saturation and catastrophic outcomes during aggressive maneuvers.