Abstract:Spiking neural networks (SNNs) offer advantages in computational efficiency via event-driven computing, compared to traditional artificial neural networks (ANNs). While direct training methods tackle the challenge of non-differentiable activation mechanisms in SNNs, they often suffer from high computational and energy costs during training. As a result, ANN-to-SNN conversion approach still remains a valuable and practical alternative. These conversion-based methods aim to leverage the discrete output produced by the quantization layer to obtain SNNs with low latency. Although the theoretical minimum latency is one timestep, existing conversion methods have struggled to realize such ultra-low latency without accuracy loss. Moreover, current quantization approaches often discard negative-value information following batch normalization and are highly sensitive to the hyperparameter configuration, leading to degraded performance. In this work, we, for the first time, analyze the information loss introduced by quantization layers through the lens of information entropy. Building on our analysis, we introduce Polarity Multi-Spike Mapping (PMSM) and a hyperparameter adjustment strategy tailored for the quantization layer. Our method achieves nearly lossless ANN-to-SNN conversion at the extremity, i.e., the first timestep, while also leveraging the temporal dynamics of SNNs across multiple timesteps to maintain stable performance on complex tasks. Experimental results show that our PMSM achieves state-of-the-art accuracies of 98.5% on CIFAR-10, 89.3% on CIFAR-100 and 81.6% on ImageNet with only one timestep on ViT-S architecture, establishing a new benchmark for efficient conversion. In addition, our method reduces energy consumption by over 5x under VGG-16 on CIFAR-10 and CIFAR-100, compared to the baseline method.
Abstract:Spiking Neural Networks have attracted significant attention in recent years due to their distinctive low-power characteristics. Meanwhile, Transformer models, known for their powerful self-attention mechanisms and parallel processing capabilities, have demonstrated exceptional performance across various domains, including natural language processing and computer vision. Despite the significant advantages of both SNNs and Transformers, directly combining the low-power benefits of SNNs with the high performance of Transformers remains challenging. Specifically, while the sparse computing mode of SNNs contributes to reduced energy consumption, traditional attention mechanisms depend on dense matrix computations and complex softmax operations. This reliance poses significant challenges for effective execution in low-power scenarios. Given the tremendous success of Transformers in deep learning, it is a necessary step to explore the integration of SNNs and Transformers to harness the strengths of both. In this paper, we propose a novel model architecture, Spike Aggregation Transformer (SAFormer), that integrates the low-power characteristics of SNNs with the high-performance advantages of Transformer models. The core contribution of SAFormer lies in the design of the Spike Aggregated Self-Attention (SASA) mechanism, which significantly simplifies the computation process by calculating attention weights using only the spike matrices query and key, thereby effectively reducing energy consumption. Additionally, we introduce a Depthwise Convolution Module (DWC) to enhance the feature extraction capabilities, further improving overall accuracy. We evaluated and demonstrated that SAFormer outperforms state-of-the-art SNNs in both accuracy and energy consumption, highlighting its significant advantages in low-power and high-performance computing.