Abstract:Large language models (LLMs) like Claude, Mistral IA, and GPT-4 excel in NLP but lack structured knowledge, leading to factual inconsistencies. We address this by integrating Knowledge Graphs (KGs) via KG-BERT to enhance grounding and reasoning. Experiments show significant gains in knowledge-intensive tasks such as question answering and entity linking. This approach improves factual reliability and enables more context-aware next-generation LLMs.
Abstract:This paper presents a psychologically-aware conversational agent designed to enhance both learning performance and emotional well-being in educational settings. The system combines Large Language Models (LLMs), a knowledge graph-enhanced BERT (KG-BERT), and a bidirectional Long Short-Term Memory (LSTM) with attention to classify students' cognitive and affective states in real time. Unlike prior chatbots limited to either tutoring or affective support, our approach leverages multimodal data-including textual semantics, prosodic speech features, and temporal behavioral trends-to infer engagement, stress, and conceptual understanding. A pilot study with university students demonstrated improved motivation, reduced stress, and moderate academic gains compared to baseline methods. These results underline the promise of integrating semantic reasoning, multimodal fusion, and temporal modeling to support adaptive, student-centered educational interventions.