Abstract:For complex simulation problems, inferring parameters of scientific interest often precludes the use of classical likelihood-based techniques due to intractable likelihood functions. Simulation-based inference (SBI) methods forego the need for explicit likelihoods by directly utilizing samples from the simulator to learn posterior distributions over parameters $\mathbfθ$ given observed data $\mathbf{x}_{\text{o}}$. Recent work has brought attention to diffusion models -- a type of generative model rooted in score matching and reverse-time stochastic dynamics -- as a flexible framework SBI tasks. This article reviews diffusion-based SBI from first principles to applications in practice. We first recall the mathematical foundations of diffusion modeling (forward noising, reverse-time SDE/ODE, probability flow, and denoising score matching) and explain how conditional scores enable likelihood-free posterior sampling. We then examine where diffusion models address pain points of normalizing flows in neural posterior/likelihood estimation and where they introduce new trade-offs (e.g., iterative sampling costs). The key theme of this review is robustness of diffusion-based SBI in non-ideal conditions common to scientific data: misspecification (mismatch between simulated training data and reality), unstructured or infinite-dimensional observations, and missingness. We synthesize methods spanning foundations drawing from Schrodinger-bridge formulations, conditional and sequential posterior samplers, amortized architectures for unstructured data, and inference-time prior adaptation. Throughout, we adopt consistent notation and emphasize conditions and caveats required for accurate posteriors. The review closes with a discussion of open problems with an eye toward applications of uncertainty quantification for probabilistic geophysical models that may benefit from diffusion-based SBI.
Abstract:Continuous-time deep learning models, such as neural ordinary differential equations (ODEs), offer a promising framework for surrogate modeling of complex physical systems. A central challenge in training these models lies in learning expressive yet stable time-varying weights, particularly under computational constraints. This work investigates weight parameterization strategies that constrain the temporal evolution of weights to a low-dimensional subspace spanned by polynomial basis functions. We evaluate both monomial and Legendre polynomial bases within neural ODE and residual network (ResNet) architectures under discretize-then-optimize and optimize-then-discretize training paradigms. Experimental results across three high-dimensional benchmark problems show that Legendre parameterizations yield more stable training dynamics, reduce computational cost, and achieve accuracy comparable to or better than both monomial parameterizations and unconstrained weight models. These findings elucidate the role of basis choice in time-dependent weight parameterization and demonstrate that using orthogonal polynomial bases offers a favorable tradeoff between model expressivity and training efficiency.