Abstract:We present SCOPE, a fast and efficient framework for modeling and manipulating deformable linear objects (DLOs). Unlike conventional energy-based approaches, SCOPE leverages convex approximations to significantly reduce computational cost while maintaining smooth and physically plausible deformations. This trade-off between speed and accuracy makes the method particularly suitable for applications requiring real-time or near-real-time response. The effectiveness of the proposed framework is demonstrated through comprehensive simulation experiments, highlighting its ability to generate smooth shape trajectories under geometric and length constraints.
Abstract:Monte Carlo (MC) reinforcement learning suffers from high sample complexity, especially in environments with sparse rewards, large state spaces, and correlated trajectories. We address these limitations by reformulating episode selection as a Quadratic Unconstrained Binary Optimization (QUBO) problem and solving it with quantum-inspired samplers. Our method, MC+QUBO, integrates a combinatorial filtering step into standard MC policy evaluation: from each batch of trajectories, we select a subset that maximizes cumulative reward while promoting state-space coverage. This selection is encoded as a QUBO, where linear terms favor high-reward episodes and quadratic terms penalize redundancy. We explore both Simulated Quantum Annealing (SQA) and Simulated Bifurcation (SB) as black-box solvers within this framework. Experiments in a finite-horizon GridWorld demonstrate that MC+QUBO outperforms vanilla MC in convergence speed and final policy quality, highlighting the potential of quantum-inspired optimization as a decision-making subroutine in reinforcement learning.