Abstract:This study presents a generative optimization framework based on a guided denoising diffusion probabilistic model (DDPM) that leverages surrogate gradients to generate heat sink designs minimizing pressure drop while maintaining surface temperatures below a specified threshold. Geometries are represented using boundary representations of multiple fins, and a multi-fidelity approach is employed to generate training data. Using this dataset, along with vectors representing the boundary representation geometries, we train a denoising diffusion probabilistic model to generate heat sinks with characteristics consistent with those observed in the data. We train two different residual neural networks to predict the pressure drop and surface temperature for each geometry. We use the gradients of these surrogate models with respect to the design variables to guide the geometry generation process toward satisfying the low-pressure and surface temperature constraints. This inference-time guidance directs the generative process toward heat sink designs that not only prevent overheating but also achieve lower pressure drops compared to traditional optimization methods such as CMA-ES. In contrast to traditional black-box optimization approaches, our method is scalable, provided sufficient training data is available. Unlike traditional topology optimization methods, once the model is trained and the heat sink world model is saved, inference under new constraints (e.g., temperature) is computationally inexpensive and does not require retraining. Samples generated using the guided diffusion model achieve pressure drops up to 10 percent lower than the limits obtained by traditional black-box optimization methods. This work represents a step toward building a foundational generative model for electronics cooling.




Abstract:Generative design has been growing across the design community as a viable method for design space exploration. Thermal design is more complex than mechanical or aerodynamic design because of the additional convection-diffusion equation and its pertinent boundary interaction. We present a generative thermal design using cooperative multi-agent deep reinforcement learning and continuous geometric representation of the fluid and solid domain. The proposed framework consists of a pre-trained neural network surrogate model as an environment to predict heat transfer and pressure drop of the generated geometries. The design space is parameterized by composite Bezier curve to solve multiple fin shape optimization. We show that our multi-agent framework can learn the policy for design strategy using multi-objective reward without the need for shape derivation or differentiable objective function.




Abstract:We present surrogate models for heat transfer and pressure drop prediction of complex fin geometries generated using composite Bezier curves. Thermal design process includes iterative high fidelity simulation which is complex, computationally expensive, and time-consuming. With the advancement in machine learning algorithms as well as Graphics Processing Units (GPUs), we can utilize the parallel processing architecture of GPUs rather than solely relying on CPUs to accelerate the thermo-fluid simulation. In this study, Convolutional Neural Networks (CNNs) are used to predict results of Computational Fluid Dynamics (CFD) directly from topologies saved as images. The case with a single fin as well as multiple morphable fins are studied. A comparison of Xception network and regular CNN is presented for the case with a single fin design. Results show that high accuracy in prediction is observed for single fin design particularly using Xception network. Increasing design freedom to multiple fins increases the error in prediction. This error, however, remains within three percent for pressure drop and heat transfer estimation which is valuable for design purpose.