Abstract:We study offline reinforcement learning in average-reward MDPs, which presents increased challenges from the perspectives of distribution shift and non-uniform coverage, and has been relatively underexamined from a theoretical perspective. While previous work obtains performance guarantees under single-policy data coverage assumptions, such guarantees utilize additional complexity measures which are uniform over all policies, such as the uniform mixing time. We develop sharp guarantees depending only on the target policy, specifically the bias span and a novel policy hitting radius, yielding the first fully single-policy sample complexity bound for average-reward offline RL. We are also the first to handle general weakly communicating MDPs, contrasting restrictive structural assumptions made in prior work. To achieve this, we introduce an algorithm based on pessimistic discounted value iteration enhanced by a novel quantile clipping technique, which enables the use of a sharper empirical-span-based penalty function. Our algorithm also does not require any prior parameter knowledge for its implementation. Remarkably, we show via hard examples that learning under our conditions requires coverage assumptions beyond the stationary distribution of the target policy, distinguishing single-policy complexity measures from previously examined cases. We also develop lower bounds nearly matching our main result.
Abstract:We analyze a learning-to-optimize (L2O) algorithm that exploits parameter space symmetry to enhance optimization efficiency. Prior work has shown that jointly learning symmetry transformations and local updates improves meta-optimizer performance. Supporting this, our theoretical analysis demonstrates that even without identifying the optimal group element, the method locally resembles Newton's method. We further provide an example where the algorithm provably learns the correct symmetry transformation during training. To empirically evaluate L2O with teleportation, we introduce a benchmark, analyze its success and failure cases, and show that enhancements like momentum further improve performance. Our results highlight the potential of leveraging neural network parameter space symmetry to advance meta-optimization.