Abstract:Fixed degree-of-freedom (DoF) loading mechanisms often suffer from excessive actuators, complex control, and limited adaptability to dynamic tasks. This study proposes an innovative mechanism of underactuated metamorphic loading manipulators (UMLM), integrating a metamorphic arm with a passively adaptive gripper. The metamorphic arm exploits geometric constraints, enabling the topology reconfiguration and flexible motion trajectories without additional actuators. The adaptive gripper, driven entirely by the arm, conforms to diverse objects through passive compliance. A structural model is developed, and a kinetostatics analysis is conducted to investigate isomorphic grasping configurations. To optimize performance, Particle-Swarm Optimization (PSO) is utilized to refine the gripper's dimensional parameters, ensuring robust adaptability across various applications. Simulation results validate the UMLM's easily implemented control strategy, operational versatility, and effectiveness in grasping diverse objects in dynamic environments. This work underscores the practical potential of underactuated metamorphic mechanisms in applications requiring efficient and adaptable loading solutions. Beyond the specific design, this generalized modeling and optimization framework extends to a broader class of manipulators, offering a scalable approach to the development of robotic systems that require efficiency, flexibility, and robust performance.
Abstract:The integration of large language models (LLMs) into robotic systems has accelerated progress in embodied artificial intelligence, yet current approaches remain constrained by existing robotic architectures, particularly serial mechanisms. This hardware dependency fundamentally limits the scope of robotic intelligence. Here, we present INGRID (Intelligent Generative Robotic Design), a framework that enables the automated design of parallel robotic mechanisms through deep integration with reciprocal screw theory and kinematic synthesis methods. We decompose the design challenge into four progressive tasks: constraint analysis, kinematic joint generation, chain construction, and complete mechanism design. INGRID demonstrates the ability to generate novel parallel mechanisms with both fixed and variable mobility, discovering kinematic configurations not previously documented in the literature. We validate our approach through three case studies demonstrating how INGRID assists users in designing task-specific parallel robots based on desired mobility requirements. By bridging the gap between mechanism theory and machine learning, INGRID enables researchers without specialized robotics training to create custom parallel mechanisms, thereby decoupling advances in robotic intelligence from hardware constraints. This work establishes a foundation for mechanism intelligence, where AI systems actively design robotic hardware, potentially transforming the development of embodied AI systems.