Abstract:Novel view synthesis in 360$^\circ$ scenes from extremely sparse input views is essential for applications like virtual reality and augmented reality. This paper presents a novel framework for novel view synthesis in extremely sparse-view cases. As typical structure-from-motion methods are unable to estimate camera poses in extremely sparse-view cases, we apply DUSt3R to estimate camera poses and generate a dense point cloud. Using the poses of estimated cameras, we densely sample additional views from the upper hemisphere space of the scenes, from which we render synthetic images together with the point cloud. Training 3D Gaussian Splatting model on a combination of reference images from sparse views and densely sampled synthetic images allows a larger scene coverage in 3D space, addressing the overfitting challenge due to the limited input in sparse-view cases. Retraining a diffusion-based image enhancement model on our created dataset, we further improve the quality of the point-cloud-rendered images by removing artifacts. We compare our framework with benchmark methods in cases of only four input views, demonstrating significant improvement in novel view synthesis under extremely sparse-view conditions for 360$^\circ$ scenes.
Abstract:The just noticeable difference (JND) is the minimal difference between stimuli that can be detected by a person. The picture-wise just noticeable difference (PJND) for a given reference image and a compression algorithm represents the minimal level of compression that causes noticeable differences in the reconstruction. These differences can only be observed in some specific regions within the image, dubbed as JND-critical regions. Identifying these regions can improve the development of image compression algorithms. Due to the fact that visual perception varies among individuals, determining the PJND values and JND-critical regions for a target population of consumers requires subjective assessment experiments involving a sufficiently large number of observers. In this paper, we propose a novel framework for conducting such experiments using crowdsourcing. By applying this framework, we created a novel PJND dataset, KonJND++, consisting of 300 source images, compressed versions thereof under JPEG or BPG compression, and an average of 43 ratings of PJND and 129 self-reported locations of JND-critical regions for each source image. Our experiments demonstrate the effectiveness and reliability of our proposed framework, which is easy to be adapted for collecting a large-scale dataset. The source code and dataset are available at https://github.com/angchen-dev/LocJND.