Abstract:This paper summarizes the recent progress we have made for the computer vision technologies in physical therapy with the accessible and affordable devices. We first introduce the remote health coaching system we build with Microsoft Kinect. Since the motion data captured by Kinect is noisy, we investigate the data accuracy of Kinect with respect to the high accuracy motion capture system. We also propose an outlier data removal algorithm based on the data distribution. In order to generate the kinematic parameter from the noisy data captured by Kinect, we propose a kinematic filtering algorithm based on Unscented Kalman Filter and the kinematic model of human skeleton. The proposed algorithm can obtain smooth kinematic parameter with reduced noise compared to the kinematic parameter generated from the raw motion data from Kinect.
Abstract:Microsoft Kinect camera and its skeletal tracking capabilities have been embraced by many researchers and commercial developers in various applications of real-time human movement analysis. In this paper, we evaluate the accuracy of the human kinematic motion data in the first and second generation of the Kinect system, and compare the results with an optical motion capture system. We collected motion data in 12 exercises for 10 different subjects and from three different viewpoints. We report on the accuracy of the joint localization and bone length estimation of Kinect skeletons in comparison to the motion capture. We also analyze the distribution of the joint localization offsets by fitting a mixture of Gaussian and uniform distribution models to determine the outliers in the Kinect motion data. Our analysis shows that overall Kinect 2 has more robust and more accurate tracking of human pose as compared to Kinect 1.
Abstract:In this paper, we propose a method for temporal segmentation of human repetitive actions based on frequency analysis of kinematic parameters, zero-velocity crossing detection, and adaptive k-means clustering. Since the human motion data may be captured with different modalities which have different temporal sampling rate and accuracy (e.g., optical motion capture systems vs. Microsoft Kinect), we first apply a generic full-body kinematic model with an unscented Kalman filter to convert the motion data into a unified representation that is robust to noise. Furthermore, we extract the most representative kinematic parameters via the primary frequency analysis. The sequences are segmented based on zero-velocity crossing of the selected parameters followed by an adaptive k-means clustering to identify the repetition segments. Experimental results demonstrate that for the motion data captured by both the motion capture system and the Microsoft Kinect, our proposed algorithm obtains robust segmentation of repetitive action sequences.