Abstract:Large language models (LLMs) and multi-agent orchestration are touted as the next leap in machine translation (MT), but their benefits relative to conventional neural MT (NMT) remain unclear. This paper offers an empirical reality check. We benchmark five paradigms, Google Translate (strong NMT baseline), GPT-4o (general-purpose LLM), o1-preview (reasoning-enhanced LLM), and two GPT-4o-powered agentic workflows (sequential three-stage and iterative refinement), on test data drawn from a legal contract and news prose in three English-source pairs: Spanish, Catalan and Turkish. Automatic evaluation is performed with COMET, BLEU, chrF2 and TER; human evaluation is conducted with expert ratings of adequacy and fluency; efficiency with total input-plus-output token counts mapped to April 2025 pricing. Automatic scores still favour the mature NMT system, which ranks first in seven of twelve metric-language combinations; o1-preview ties or places second in most remaining cases, while both multi-agent workflows trail. Human evaluation reverses part of this narrative: o1-preview produces the most adequate and fluent output in five of six comparisons, and the iterative agent edges ahead once, indicating that reasoning layers capture semantic nuance undervalued by surface metrics. Yet these qualitative gains carry steep costs. The sequential agent consumes roughly five times, and the iterative agent fifteen times, the tokens used by NMT or single-pass LLMs. We advocate multidimensional, cost-aware evaluation protocols and highlight research directions that could tip the balance: leaner coordination strategies, selective agent activation, and hybrid pipelines combining single-pass LLMs with targeted agent intervention.
Abstract:This article investigates how translation memories (TM) can be created by translators or other language professionals in order to compile domain-specific parallel corpora , which can then be used in different scenarios, such as machine translation training and fine-tuning, TM leveraging, and/or large language model fine-tuning. The article introduces a semi-automatic TM preparation methodology leveraging primarily translation tools used by translators in favor of data quality and control by the translators. This semi-automatic methodology is then used to build a cardiology-based Turkish -> English corpus from bilingual abstracts of Turkish cardiology journals. The resulting corpus called TRENCARD Corpus has approximately 800,000 source words and 50,000 sentences. Using this methodology, translators can build their custom TMs in a reasonable time and use them in their bilingual data requiring tasks.
Abstract:This study evaluates the machine translation (MT) quality of two state-of-the-art large language models (LLMs) against a tradition-al neural machine translation (NMT) system across four language pairs in the legal domain. It combines automatic evaluation met-rics (AEMs) and human evaluation (HE) by professional transla-tors to assess translation ranking, fluency and adequacy. The re-sults indicate that while Google Translate generally outperforms LLMs in AEMs, human evaluators rate LLMs, especially GPT-4, comparably or slightly better in terms of producing contextually adequate and fluent translations. This discrepancy suggests LLMs' potential in handling specialized legal terminology and context, highlighting the importance of human evaluation methods in assessing MT quality. The study underscores the evolving capabil-ities of LLMs in specialized domains and calls for reevaluation of traditional AEMs to better capture the nuances of LLM-generated translations.