Abstract:In contrast to single-image deblurring, video deblurring has the advantage that neighbor frames can be utilized to deblur a target frame. However, existing video deblurring algorithms often fail to properly employ the neighbor frames, resulting in sub-optimal performance. In this paper, we propose a deconvolution and aggregation network (DAN) for video deblurring that utilizes the information of neighbor frames well. In DAN, both deconvolution and aggregation strategies are achieved through three sub-networks: the preprocessing network (PPN) and the alignment-based deconvolution network (ABDN) for the deconvolution scheme; the frame aggregation network (FAN) for the aggregation scheme. In the deconvolution part, blurry inputs are first preprocessed by the PPN with non-local operations. Then, the output frames from the PPN are deblurred by the ABDN based on the frame alignment. In the FAN, these deblurred frames from the deconvolution part are combined into a latent frame according to reliability maps which infer pixel-wise sharpness. The proper combination of three sub-networks can achieve favorable performance on video deblurring by using the neighbor frames suitably. In experiments, the proposed DAN was demonstrated to be superior to existing state-of-the-art methods through both quantitative and qualitative evaluations on the public datasets.
Abstract:Video quality is often severely degraded by multiple factors rather than a single factor. These low-quality videos can be restored to high-quality videos by sequentially performing appropriate video enhancement techniques. However, the sequential approach was inefficient and sub-optimal because most video enhancement approaches were designed without taking into account that multiple factors together degrade video quality. In this paper, we propose a new joint video enhancement method that mitigates multiple degradation factors simultaneously by resolving an integrated enhancement problem. Our proposed network, named DSFN, directly produces a high-resolution, high-frame-rate, and clear video from a low-resolution, low-frame-rate, and blurry video. In the DSFN, low-resolution and blurry input frames are enhanced by a joint deblurring and super-resolution (JDSR) module. Meanwhile, intermediate frames between input adjacent frames are interpolated by a triple-frame-based frame interpolation (TFBFI) module. The proper combination of the proposed modules of DSFN can achieve superior performance on the joint video enhancement task. Experimental results show that the proposed method outperforms other sequential state-of-the-art techniques on public datasets with a smaller network size and faster processing time.