Abstract:Accurate ranking of important features is a fundamental challenge in interpretable machine learning with critical applications in scientific discovery and decision-making. Unlike feature selection and feature importance, the specific problem of ranking important features has received considerably less attention. We introduce RAMPART (Ranked Attributions with MiniPatches And Recursive Trimming), a framework that utilizes any existing feature importance measure in a novel algorithm specifically tailored for ranking the top-$k$ features. Our approach combines an adaptive sequential halving strategy that progressively focuses computational resources on promising features with an efficient ensembling technique using both observation and feature subsampling. Unlike existing methods that convert importance scores to ranks as post-processing, our framework explicitly optimizes for ranking accuracy. We provide theoretical guarantees showing that RAMPART achieves the correct top-$k$ ranking with high probability under mild conditions, and demonstrate through extensive simulation studies that RAMPART consistently outperforms popular feature importance methods, concluding with a high-dimensional genomics case study.
Abstract:Feature importance measures are widely studied and are essential for understanding model behavior, guiding feature selection, and enhancing interpretability. However, many machine learning fitted models involve complex, higher-order interactions between features. Existing feature importance metrics fail to capture these higher-order effects while existing interaction metrics often suffer from limited applicability or excessive computation; no methods exist to conduct statistical inference for feature interactions. To bridge this gap, we first propose a new model-agnostic metric, interaction Leave-One-Covariate-Out iLOCO, for measuring the importance of higher-order feature interactions. Next, we leverage recent advances in LOCO inference to develop distribution-free and assumption-light confidence intervals for our iLOCO metric. To address computational challenges, we also introduce an ensemble learning method for calculating the iLOCO metric and confidence intervals that we show is both computationally and statistically efficient. We validate our iLOCO metric and our confidence intervals on both synthetic and real data sets, showing that our approach outperforms existing methods and provides the first inferential approach to detecting feature interactions.