Abstract:We present MedHal, a novel large-scale dataset specifically designed to evaluate if models can detect hallucinations in medical texts. Current hallucination detection methods face significant limitations when applied to specialized domains like medicine, where they can have disastrous consequences. Existing medical datasets are either too small, containing only a few hundred samples, or focus on a single task like Question Answering or Natural Language Inference. MedHal addresses these gaps by: (1) incorporating diverse medical text sources and tasks; (2) providing a substantial volume of annotated samples suitable for training medical hallucination detection models; and (3) including explanations for factual inconsistencies to guide model learning. We demonstrate MedHal's utility by training and evaluating a baseline medical hallucination detection model, showing improvements over general-purpose hallucination detection approaches. This resource enables more efficient evaluation of medical text generation systems while reducing reliance on costly expert review, potentially accelerating the development of medical AI research.
Abstract:Large Language Models (LLMs) offer promising solutions for text summarization. However, some domains require specific information to be available in the summaries. Generating these domain-adapted summaries is still an open challenge. Similarly, hallucinations in generated content is a major drawback of current approaches, preventing their deployment. This study proposes a novel approach that leverages ontologies to create domain-adapted summaries both structured and unstructured. We employ an ontology-guided constrained decoding process to reduce hallucinations while improving relevance. When applied to the medical domain, our method shows potential in summarizing Electronic Health Records (EHRs) across different specialties, allowing doctors to focus on the most relevant information to their domain. Evaluation on the MIMIC-III dataset demonstrates improvements in generating domain-adapted summaries of clinical notes and hallucination reduction.