Abstract:Training effective Text-to-SQL models remains challenging due to the scarcity of high-quality, diverse, and structurally complex datasets. Existing methods either rely on limited human-annotated corpora, or synthesize datasets directly by simply prompting LLMs without explicit control over SQL structures, often resulting in limited structural diversity and complexity. To address this, we introduce EvolSQL, a structure-aware data synthesis framework that evolves SQL queries from seed data into richer and more semantically diverse forms. EvolSQL starts with an exploratory Query-SQL expansion to broaden question diversity and improve schema coverage, and then applies an adaptive directional evolution strategy using six atomic transformation operators derived from the SQL Abstract Syntax Tree to progressively increase query complexity across relational, predicate, aggregation, and nesting dimensions. An execution-grounded SQL refinement module and schema-aware deduplication further ensure the creation of high-quality, structurally diverse mapping pairs. Experimental results show that a 7B model fine-tuned on our data outperforms one trained on the much larger SynSQL dataset using only 1/18 of the data.
Abstract:LLMs achieve remarkable multi-step reasoning capabilities, yet effectively transferring these skills via post-training distillation remains challenging. Existing data selection methods, ranging from manual curation to heuristics based on length, entropy, or overall loss, fail to capture the causal importance of individual reasoning steps, limiting distillation efficiency. To address this, we propose Attention Influence for Reasoning (AIR), a principled, unsupervised and training-free framework that leverages mechanistic insights of the retrieval head to select high-value post-training data. AIR first identifies reasoning-critical attention heads of an off-the-shelf model, then constructs a weakened reference model with disabled head influence, and finally quantifies the resulting loss divergence as the Attention Influence Score. This score enables fine-grained assessment at both the step and sample levels, supporting step-level weighted fine-tuning and global sample selection. Experiments across multiple reasoning benchmarks show that AIR consistently improves reasoning accuracy, surpassing heuristic baselines and effectively isolating the most critical steps and samples. Our work establishes a mechanism-driven, data-efficient approach for reasoning distillation in LLMs.