Abstract:Molecular dynamics (MD) is a powerful tool for exploring the behavior of atomistic systems, but its reliance on sequential numerical integration limits simulation efficiency. We present MDtrajNet-1, a foundational AI model that directly generates MD trajectories across chemical space, bypassing force calculations and integration. This approach accelerates simulations by up to two orders of magnitude compared to traditional MD, even those enhanced by machine-learning interatomic potentials. MDtrajNet-1 combines equivariant neural networks with a Transformer-based architecture to achieve strong accuracy and transferability in predicting long-time trajectories for both known and unseen systems. Remarkably, the errors of the trajectories generated by MDtrajNet-1 for various molecular systems are close to those of the conventional ab initio MD. The model's flexible design supports diverse application scenarios, including different statistical ensembles, boundary conditions, and interaction types. By overcoming the intrinsic speed barrier of conventional MD, MDtrajNet-1 opens new frontiers in efficient and scalable atomistic simulations.
Abstract:Quantum chemical simulations can be greatly accelerated by constructing machine learning potentials, which is often done using active learning (AL). The usefulness of the constructed potentials is often limited by the high effort required and their insufficient robustness in the simulations. Here we introduce the end-to-end AL for constructing robust data-efficient potentials with affordable investment of time and resources and minimum human interference. Our AL protocol is based on the physics-informed sampling of training points, automatic selection of initial data, and uncertainty quantification. The versatility of this protocol is shown in our implementation of quasi-classical molecular dynamics for simulating vibrational spectra, conformer search of a key biochemical molecule, and time-resolved mechanism of the Diels-Alder reaction. These investigations took us days instead of weeks of pure quantum chemical calculations on a high-performance computing cluster.
Abstract:Machine learning (ML) is increasingly becoming a common tool in computational chemistry. At the same time, the rapid development of ML methods requires a flexible software framework for designing custom workflows. MLatom 3 is a program package designed to leverage the power of ML to enhance typical computational chemistry simulations and to create complex workflows. This open-source package provides plenty of choice to the users who can run simulations with the command line options, input files, or with scripts using MLatom as a Python package, both on their computers and on the online XACS cloud computing at XACScloud.com. Computational chemists can calculate energies and thermochemical properties, optimize geometries, run molecular and quantum dynamics, and simulate (ro)vibrational, one-photon UV/vis absorption, and two-photon absorption spectra with ML, quantum mechanical, and combined models. The users can choose from an extensive library of methods containing pre-trained ML models and quantum mechanical approximations such as AIQM1 approaching coupled-cluster accuracy. The developers can build their own models using various ML algorithms. The great flexibility of MLatom is largely due to the extensive use of the interfaces to many state-of-the-art software packages and libraries.