Abstract:This paper investigates semi-blind channel estimation for massive multiple-input multiple-output (MIMO) systems. To this end, we first estimate a subspace based on all received symbols (pilot and payload) to provide additional information for subsequent channel estimation. We show how this additional information enhances minimum mean square error (MMSE) channel estimation. Two variants of the linear MMSE (LMMSE) estimator are formulated, where the first one solves the estimation within the subspace, and the second one uses a subspace projection as a preprocessing step. Theoretical derivations show the superior estimation performance of the latter method in terms of mean square error for uncorrelated Rayleigh fading. Subsequently, we introduce parameterizations of this semi-blind LMMSE estimator based on two different conditional Gaussian latent models, i.e., the Gaussian mixture model and the variational autoencoder. Both models learn the underlying channel distribution of the propagation environment based on training data and serve as generative priors for semi-blind channel estimation. Extensive simulations for real-world measurement data and spatial channel models show the superior performance of the proposed methods compared to state-of-the-art semi-blind channel estimators with respect to the MSE.
Abstract:The mean square error (MSE)-optimal estimator is known to be the conditional mean estimator (CME). This paper introduces a parametric channel estimation technique based on Bayesian estimation. This technique uses the estimated channel parameters to parameterize the well-known LMMSE channel estimator. We first derive an asymptotic CME formulation that holds for a wide range of priors on the channel parameters. Based on this, we show that parametric Bayesian channel estimation is MSE-optimal for high signal-to-noise ratio (SNR) and/or long coherence intervals, i.e., many noisy observations provided within one coherence interval. Numerical simulations validate the derived formulations.
Abstract:Leveraging the inherent connection between sensing systems and wireless communications can improve their overall performance and is the core objective of joint communications and sensing. For effective communications, one has to frequently estimate the channel. Sensing, on the other hand, infers properties of the environment mostly based on estimated physical channel parameters, such as directions of arrival or delays. This work presents a low-complexity generative modeling approach that simultaneously estimates the wireless channel and its physical parameters without additional computational overhead. To this end, we leverage a recently proposed physics-informed generative model for wireless channels based on sparse Bayesian generative modeling and exploit the feature of conditionally Gaussian generative models to approximate the conditional mean estimator.
Abstract:This paper investigates the combination of parametric channel estimation with minimum mean square error (MMSE) estimation. We propose a two-stage channel estimation technique that utilizes the decomposition of wireless communication channels into a distinct line-of-sight (LoS) path and multiple reflected scattered clusters. Firstly, a direction-of-arrival (DoA)-based estimator is formulated to estimate the LoS component. Afterwards, we utilize a Gaussian mixture model to estimate the conditionally Gaussian distributed random vector, which represents the multipath propagation. The proposed two-stage estimator allows pre-computing the respective estimation filters, tremendously reducing the computational complexity. Numerical simulations with typical channel models depict the superior performance of our proposed two-stage estimation approach as compared to state-of-the-art methods.
Abstract:In this work, we propose two methods that utilize data symbols in addition to pilot symbols for improved channel estimation quality in a multi-user system, so-called semi-blind channel estimation. To this end, a subspace is estimated based on all received symbols and utilized to improve the estimation quality of a Gaussian mixture model-based channel estimator, which solely uses pilot symbols for channel estimation. Both of the proposed approaches allow for parallelization. Even the precomputation of estimation filters, which is beneficial in terms of computational complexity, is enabled by one of the proposed methods. Numerical simulations for real channel measurement data available to us show that the proposed methods outperform the studied state-of-the-art channel estimators.
Abstract:In this work, we consider the use of a model-based decoder in combination with an unsupervised learning strategy for direction-of-arrival (DoA) estimation. Relying only on unlabeled training data we show in our analysis that we can outperform existing unsupervised machine learning methods and classical methods. This is done by introducing a model-based decoder in an autoencoder architecture with leads to a meaningful representation of the statistical model in the latent space. Our numerical simulation show that the performance of the presented approach is not affected by correlated signals but rather improves slightly. This is due to the fact, that we propose the estimation of the correlation parameters simultaneously to the DoA estimation.
Abstract:Classical methods for model order selection often fail in scenarios with low SNR or few snapshots. Deep learning based methods are promising alternatives for such challenging situations as they compensate lack of information in observations with repeated training on large datasets. This manuscript proposes an approach that uses a variational autoencoder (VAE) for model order selection. The idea is to learn a parameterized conditional covariance matrix at the VAE decoder that approximates the true signal covariance matrix. The method itself is unsupervised and only requires a small representative dataset for calibration purposes after training of the VAE. Numerical simulations show that the proposed method clearly outperforms classical methods and even reaches or beats a supervised approach depending on the considered snapshots.