Abstract:While world models are increasingly positioned as a pathway to overcoming data scarcity in domains such as robotics, open training infrastructure for world modeling remains nascent. We introduce Jasmine, a performant JAX-based world modeling codebase that scales from single hosts to hundreds of accelerators with minimal code changes. Jasmine achieves an order-of-magnitude faster reproduction of the CoinRun case study compared to prior open implementations, enabled by performance optimizations across data loading, training and checkpointing. The codebase guarantees fully reproducible training and supports diverse sharding configurations. By pairing Jasmine with curated large-scale datasets, we establish infrastructure for rigorous benchmarking pipelines across model families and architectural ablations.




Abstract:Existing approaches for classifying dynamic graphs either lift graph kernels to the temporal domain, or use graph neural networks (GNNs). However, current baselines have scalability issues, cannot handle a changing node set, or do not take edge weight information into account. We propose filtration surfaces, a novel method that is scalable and flexible, to alleviate said restrictions. We experimentally validate the efficacy of our model and show that filtration surfaces outperform previous state-of-the-art baselines on datasets that rely on edge weight information. Our method does so while being either completely parameter-free or having at most one parameter, and yielding the lowest overall standard deviation.