Abstract:Attitudes toward STEM develop from the interaction of conceptual knowledge, educational experiences, and affect. Here we use cognitive network science to reconstruct group mindsets as behavioural forma mentis networks (BFMNs). In this case, nodes are cue words and free associations, edges are empirical associative links, and each concept is annotated with perceived valence. We analyse BFMNs from N = 994 observations spanning high school students, university students, and early-career STEM experts, alongside LLM (GPT-oss) "digital twins" prompted to emulate comparable profiles. Focusing also on semantic neighbourhoods ("frames") around key target concepts (e.g., STEM subjects or educational actors/places), we quantify frames in terms of valence auras, emotional profiles, network overlap (Jaccard similarity), and concreteness relative to null baselines. Across student groups, science and research are consistently framed positively, while their core quantitative subjects (mathematics and statistics) exhibit more negative and anxiety related auras, amplified in higher math-anxiety subgroups, evidencing a STEM-science cognitive and emotional dissonance. High-anxiety frames are also less concrete than chance, suggesting more abstract and decontextualised representations of threatening quantitative domains. Human networks show greater overlapping between mathematics and anxiety than GPT-oss. The results highlight how BFMNs capture cognitive-affective signatures of mindsets towards the target domains and indicate that LLM-based digital twins approximate cultural attitudes but miss key context-sensitive, experience-based components relevant to replicate human educational anxiety.