Abstract:Quantum Diffusion Models (QDMs) are an emerging paradigm in Generative AI that aims to use quantum properties to improve the performances of their classical counterparts. However, existing algorithms are not easily scalable due to the limitations of near-term quantum devices. Following our previous work on QDMs, here we propose and implement two physics-inspired protocols. In the first, we use the formalism of quantum stochastic walks, showing that a specific interplay of quantum and classical dynamics in the forward process produces statistically more robust models generating sets of MNIST images with lower Fr\'echet Inception Distance (FID) than using totally classical dynamics. In the second approach, we realize an algorithm to generate images by exploiting the intrinsic noise of real IBM quantum hardware with only four qubits. Our work could be a starting point to pave the way for new scenarios for large-scale algorithms in quantum Generative AI, where quantum noise is neither mitigated nor corrected, but instead exploited as a useful resource.
Abstract:Quantum approximate optimization algorithm (QAOA) is a variational quantum algorithm (VQA) ideal for noisy intermediate-scale quantum (NISQ) processors, and is highly successful for solving combinatorial optimization problems (COPs). It has been observed that the optimal variational parameters obtained from one instance of a COP can be transferred to another instance, producing sufficiently satisfactory solutions for the latter. In this context, a suitable method for further improving the solution is to fine-tune a subset of the transferred parameters. We numerically explore the role of optimizing individual QAOA layers in improving the approximate solution of the Max-Cut problem after parameter transfer. We also investigate the trade-off between a good approximation and the required optimization time when optimizing transferred QAOA parameters. These studies show that optimizing a subset of layers can be more effective at a lower time-cost compared to optimizing all layers.