Abstract:Learning interpretable representations with variational autoencoders (VAEs) is a major goal of representation learning. The main challenge lies in obtaining disentangled representations, where each latent dimension corresponds to a distinct generative factor. This difficulty is fundamentally tied to the inability to perform nonlinear independent component analysis. Here, we introduce the framework of action-induced representations (AIRs) which models representations of physical systems given experiments (or actions) that can be performed on them. We show that, in this framework, we can provably disentangle degrees of freedom w.r.t. their action dependence. We further introduce a variational AIR architecture (VAIR) that can extract AIRs and therefore achieve provable disentanglement where standard VAEs fail. Beyond state representation, VAIR also captures the action dependence of the underlying generative factors, directly linking experiments to the degrees of freedom they influence.
Abstract:Quantum computing has recently emerged as a transformative technology. Yet, its promised advantages rely on efficiently translating quantum operations into viable physical realizations. In this work, we use generative machine learning models, specifically denoising diffusion models (DMs), to facilitate this transformation. Leveraging text-conditioning, we steer the model to produce desired quantum operations within gate-based quantum circuits. Notably, DMs allow to sidestep during training the exponential overhead inherent in the classical simulation of quantum dynamics -- a consistent bottleneck in preceding ML techniques. We demonstrate the model's capabilities across two tasks: entanglement generation and unitary compilation. The model excels at generating new circuits and supports typical DM extensions such as masking and editing to, for instance, align the circuit generation to the constraints of the targeted quantum device. Given their flexibility and generalization abilities, we envision DMs as pivotal in quantum circuit synthesis, enhancing both practical applications but also insights into theoretical quantum computation.