Abstract:Learning interpretable representations with variational autoencoders (VAEs) is a major goal of representation learning. The main challenge lies in obtaining disentangled representations, where each latent dimension corresponds to a distinct generative factor. This difficulty is fundamentally tied to the inability to perform nonlinear independent component analysis. Here, we introduce the framework of action-induced representations (AIRs) which models representations of physical systems given experiments (or actions) that can be performed on them. We show that, in this framework, we can provably disentangle degrees of freedom w.r.t. their action dependence. We further introduce a variational AIR architecture (VAIR) that can extract AIRs and therefore achieve provable disentanglement where standard VAEs fail. Beyond state representation, VAIR also captures the action dependence of the underlying generative factors, directly linking experiments to the degrees of freedom they influence.
Abstract:Measurement-based quantum computation (MBQC) offers a fundamentally unique paradigm to design quantum algorithms. Indeed, due to the inherent randomness of quantum measurements, the natural operations in MBQC are not deterministic and unitary, but are rather augmented with probabilistic byproducts. Yet, the main algorithmic use of MBQC so far has been to completely counteract this probabilistic nature in order to simulate unitary computations expressed in the circuit model. In this work, we propose designing MBQC algorithms that embrace this inherent randomness and treat the random byproducts in MBQC as a resource for computation. As a natural application where randomness can be beneficial, we consider generative modeling, a task in machine learning centered around generating complex probability distributions. To address this task, we propose a variational MBQC algorithm equipped with control parameters that allow to directly adjust the degree of randomness to be admitted in the computation. Our numerical findings indicate that this additional randomness can lead to significant gains in learning performance in certain generative modeling tasks. These results highlight the potential advantages in exploiting the inherent randomness of MBQC and motivate further research into MBQC-based algorithms.