Abstract:The purpose of this paper is to elucidate the theory and mathematical modelling behind the sheaf neural network (SNN) algorithm and then show how SNN can effectively answer to biomedical questions in a concrete case study and outperform the most popular graph neural networks (GNNs) as graph convolutional networks (GCNs), graph attention networks (GAT) and GraphSage.




Abstract:We exploit the mathematical modeling of the visual cortex mechanism for border completion to define custom filters for CNNs. We see a consistent improvement in performance, particularly in accuracy, when our modified LeNet 5 is tested with occluded MNIST images.




Abstract:Graph Neural Networks (GNNs) are becoming central in the study of time series, coupled with existing algorithms as Temporal Convolutional Networks and Recurrent Neural Networks. In this paper, we see time series themselves as directed graphs, so that their topology encodes time dependencies and we start to explore the effectiveness of GNNs architectures on them. We develop two distinct Geometric Deep Learning models, a supervised classifier and an autoencoder-like model for signal reconstruction. We apply these models on a quality recognition problem.