Abstract:Extended reality technologies are transforming fields such as healthcare, entertainment, and education, with Smart Eye-Wears (SEWs) and Artificial Intelligence (AI) playing a crucial role. However, SEWs face inherent limitations in computational power, memory, and battery life, while offloading computations to external servers is constrained by network conditions and server workload variability. To address these challenges, we propose a Federated Reinforcement Learning (FRL) framework, enabling multiple agents to train collaboratively while preserving data privacy. We implemented synchronous and asynchronous federation strategies, where models are aggregated either at fixed intervals or dynamically based on agent progress. Experimental results show that federated agents exhibit significantly lower performance variability, ensuring greater stability and reliability. These findings underscore the potential of FRL for applications requiring robust real-time AI processing, such as real-time object detection in SEWs.
Abstract:Artificial Intelligence (AI) and Deep Learning (DL) algorithms are currently applied to a wide range of products and solutions. DL training jobs are highly resource demanding and they experience great benefits when exploiting AI accelerators (e.g., GPUs). However, the effective management of GPU-powered clusters comes with great challenges. Among these, efficient scheduling and resource allocation solutions are crucial to maximize performance and minimize Data Centers operational costs. In this paper we propose ANDREAS, an advanced scheduling solution that tackles these problems jointly, aiming at optimizing DL training runtime workloads and their energy consumption in accelerated clusters. Experiments based on simulation demostrate that we can achieve a cost reduction between 30 and 62% on average with respect to first-principle methods while the validation on a real cluster shows a worst case deviation below 13% between actual and predicted costs, proving the effectiveness of ANDREAS solution in practical scenarios.