Abstract:The growth of digital documents presents significant challenges in efficient management and knowledge extraction. Traditional methods often struggle with complex documents, leading to issues such as hallucinations and high latency in responses from Large Language Models (LLMs). ZeroG, an innovative approach, significantly mitigates these challenges by leveraging knowledge distillation and prompt tuning to enhance model performance. ZeroG utilizes a smaller model that replicates the behavior of a larger teacher model, ensuring contextually relevant and grounded responses, by employing a black-box distillation approach, it creates a distilled dataset without relying on intermediate features, optimizing computational efficiency. This method significantly enhances accuracy and reduces response times, providing a balanced solution for modern document management. Incorporating advanced techniques for document ingestion and metadata utilization, ZeroG improves the accuracy of question-and-answer systems. The integration of graph databases and robust metadata management further streamlines information retrieval, allowing for precise and context-aware responses. By transforming how organizations interact with complex data, ZeroG enhances productivity and user experience, offering a scalable solution for the growing demands of digital document management.
Abstract:In this study, we evaluate the performance of multiple state-of-the-art SRGAN (Super Resolution Generative Adversarial Network) models, ESRGAN, Real-ESRGAN and EDSR, on a benchmark dataset of real-world images which undergo degradation using a pipeline. Our results show that some models seem to significantly increase the resolution of the input images while preserving their visual quality, this is assessed using Tesseract OCR engine. We observe that EDSR-BASE model from huggingface outperforms the remaining candidate models in terms of both quantitative metrics and subjective visual quality assessments with least compute overhead. Specifically, EDSR generates images with higher peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) values and are seen to return high quality OCR results with Tesseract OCR engine. These findings suggest that EDSR is a robust and effective approach for single-image super-resolution and may be particularly well-suited for applications where high-quality visual fidelity is critical and optimized compute.