Abstract:Large Language Models (LLMs) are increasingly positioned as decision engines for hiring, healthcare, and economic judgment, yet real-world human judgment reflects a balance between rational deliberation and emotion-driven bias. If LLMs are to participate in high-stakes decisions or serve as models of human behavior, it is critical to assess whether they exhibit analogous patterns of (ir)rationalities and biases. To this end, we evaluate multiple LLM families on (i) benchmarks testing core axioms of rational choice and (ii) classic decision domains from behavioral economics and social norms where emotions are known to shape judgment and choice. Across settings, we show that deliberate "thinking" reliably improves rationality and pushes models toward expected-value maximization. To probe human-like affective distortions and their interaction with reasoning, we use two emotion-steering methods: in-context priming (ICP) and representation-level steering (RLS). ICP induces strong directional shifts that are often extreme and difficult to calibrate, whereas RLS produces more psychologically plausible patterns but with lower reliability. Our results suggest that the same mechanisms that improve rationality also amplify sensitivity to affective interventions, and that different steering methods trade off controllability against human-aligned behavior. Overall, this points to a tension between reasoning and affective steering, with implications for both human simulation and the safe deployment of LLM-based decision systems.
Abstract:The ability to control LLMs' emulated emotional states and personality traits is essential for enabling rich, human-centered interactions in socially interactive settings. We introduce PsySET, a Psychologically-informed benchmark to evaluate LLM Steering Effectiveness and Trustworthiness across the emotion and personality domains. Our study spans four models from different LLM families paired with various steering strategies, including prompting, fine-tuning, and representation engineering. Our results indicate that prompting is consistently effective but limited in intensity control, whereas vector injections achieve finer controllability while slightly reducing output quality. Moreover, we explore the trustworthiness of steered LLMs by assessing safety, truthfulness, fairness, and ethics, highlighting potential side effects and behavioral shifts. Notably, we observe idiosyncratic effects; for instance, even a positive emotion like joy can degrade robustness to adversarial factuality, lower privacy awareness, and increase preferential bias. Meanwhile, anger predictably elevates toxicity yet strengthens leakage resistance. Our framework establishes the first holistic evaluation of emotion and personality steering, offering insights into its interpretability and reliability for socially interactive applications.