Abstract:Comprehending genomic information is essential for biomedical research, yet extracting data from complex distributed databases remains challenging. Large language models (LLMs) offer potential for genomic Question Answering (QA) but face limitations due to restricted access to domain-specific databases. GeneGPT is the current state-of-the-art system that enhances LLMs by utilizing specialized API calls, though it is constrained by rigid API dependencies and limited adaptability. We replicate GeneGPT and propose GenomAgent, a multi-agent framework that efficiently coordinates specialized agents for complex genomics queries. Evaluated on nine tasks from the GeneTuring benchmark, GenomAgent outperforms GeneGPT by 12% on average, and its flexible architecture extends beyond genomics to various scientific domains needing expert knowledge extraction.
Abstract:The evaluation of navigation instructions remains a persistent challenge in Vision-and-Language Navigation (VLN) research. Traditional reference-based metrics such as BLEU and ROUGE fail to capture the functional utility of spatial directives, specifically whether an instruction successfully guides a navigator to the intended destination. Although existing VLN agents could serve as evaluators, their reliance on high-fidelity visual simulators introduces licensing constraints and computational costs, and perception errors further confound linguistic quality assessment. This paper introduces GROKE(Graph-based Reasoning over OSM Knowledge for instruction Evaluation), a vision-free training-free hierarchical LLM-based framework for evaluating navigation instructions using OpenStreetMap data. Through systematic ablation studies, we demonstrate that structured JSON and textual formats for spatial information substantially outperform grid-based and visual graph representations. Our hierarchical architecture combines sub-instruction planning with topological graph navigation, reducing navigation error by 68.5% compared to heuristic and sampling baselines on the Map2Seq dataset. The agent's execution success, trajectory fidelity, and decision patterns serve as proxy metrics for functional navigability given OSM-visible landmarks and topology, establishing a scalable and interpretable evaluation paradigm without visual dependencies. Code and data are available at https://anonymous.4open.science/r/groke.